Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 411–417 | Cite as

Atmospheric radiation distributed information-computational system

  • K. M. Firsov
  • T. Yu. Chesnokova
  • E. M. Kozodoeva
  • A. Z. Fazliev
Optical Models and Databases of Optical Information About the Environment

Abstract

The Atmospheric Radiation Internet-accessible distributed information-computational system is described. The system’s servers are located at the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk); Volgograd State University; and Ural State University (Yekaterinburg). The information-computational system not only provides for access to data, but also allows for the calculation of the radiative characteristics of the Earth’s atmosphere. The system is aimed at investigations of the radiative transfer in the Earth’s atmosphere. The radiative models of the system are interesting for postgraduate students, students, and specialists in the area of atmospheric radiation and climate.

Keywords

Radiative Transfer Molecular Absorption Atmospheric Radiation Atmospheric Optic Effective Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Atmospheric Radiation Measurement Program, http://www.archive.arm.gov/about.html
  2. 2.
    Atmospheric Infrared Sounder, Jet Propulsion Laboratory, http://airs.jpl.nasa.gov
  3. 3.
    R. N. Halthore, D. Crisp, S. E. Schwartz, G. P. Anderson, A. Berk, B. Bonnel, O. Boucher, F.-L. Chang, M.-D. Chou, E. E. Clothiaux, P. Dubuisson, B. Fomin, Y. Fouquart, S. Freidenreich, C. Gautier, S. Kato, I. Laszlo, Z. Li, J. H. Mather, A. Plana-Fattori, V. Ramaswamy, P. Ricchiazzi, Y. Shiren, A. Trish- chenko, and W. Wiscombe, “Intercomparison of Shortwave Radiative Transfer Codes and Measurements,” J. Geophys. Res. 110(11), D11206 (2005).CrossRefADSGoogle Scholar
  4. 4.
    International TOVS Group, “Intercomparison of Forward and Jacobian Radiative Transfer Models for HIRS and AMSU Channels,” http://collaboration.cmc.ec.gc.ca/science/arma/intercomparison/
  5. 5.
  6. 6.
    J. Wang and G. P. Anderson, “Validation of FASCODE and MODTRAN3: Comparison of Model Calculations with Interferometer Observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, Proc. SPIE 2309, 170–183 (1994).Google Scholar
  7. 7.
    Radiative Transfer Working Group, “Line-By-Line Radiative Transfer Model,” http://rtweb.aer.com/lblrtm-frame.html
  8. 8.
    Center for Astrophysics, “HITRAN,” http://cfa-Www.harvard.edu/hitran
  9. 9.
    E. P. Gordov, A. Z. Fazliev, and V. N. Lykosov, Web Portal on Environmental Sciences “ATMOS”, Adv. Geosci. 8, 33–38 (2006).CrossRefGoogle Scholar
  10. 10.
    K. M. Firsov, A. Z. Fazliev, S. M. Sakerin, T. B. Zhuravleva, B. A. Fomin, and V. I. Zakharov, “Informational Computational System ‘Atmospheric Radiation’, Modern State, Development Prospects,” in Proc. of the 9th All-Russ. Sci. Conf. on Electronic Libraries: Prospect Methods and Technologies, Electronic Collections — RSDL’2007 (Pereslavl’-Zalesskii, 2007), Part 1, pp. 62–66.Google Scholar
  11. 11.
    K. M. Firsov, A. Z. Fazliev, T. Yu. Chesnokova, and E. M. Kozodoeva, “Distributed Informational Computational System ‘Atmospheric Radiation’,” in Proc. of the 11th All-Russ. Sci. Conf. on Electronic Libraries: Prospect Methods and Technologies, Electronic Collections, Petrozavodsk, 17–21 Sept. 2009, pp. 393–399.Google Scholar
  12. 12.
    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Modelling of Modern Climate Using Atmospheric Model of IVM RAN, Description of A5421 Model (vers. from 1997) and Experiment Results According to AMIR II Program (VINITI, Moscow, 1998), http://climate.atmos.iao.ru/ser/mono/mod [in Russian].Google Scholar
  13. 13.
    V. A. Frolkis and E. V. Rozanov, “Radiation Code for Climate and General Circulation Models,” in IRS’92 Current Problems in Atmospheric Radiation, Ed. by S. Keevallik (Deepak Publ., Hampton, USA, 1993), pp. 176–179.Google Scholar
  14. 14.
    A. Z. Fazliev, “Development of Information Systems in IOA SO RAN,” Opt. Atmosf. Okeana 22(10), 988–992 (2009).Google Scholar
  15. 15.
    “Intermediate Program Support, Means of Creation and Support of Information Computing Systems,” Grant No. 06-07-89201.Google Scholar
  16. 16.
    N. A. Lavrent’ev and A. Z. Fazliev, “Accounting of Intervention in Systems of Work Flows Control,” Vychisl. Tekhnol. 13(3, Spec. Iss.), 12–18 (2008).Google Scholar
  17. 17.
    G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (TNTs SO AN SSSR, Tomsk, 1986) [in Russian].Google Scholar
  18. 18.
    G. M. Krekov and R. F. Rakhimov, Optical-Radar Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  19. 19.
    Y. X. Hu and K. Stamnes, “An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models,” J. Climate 6(4), 728–742 (1993).CrossRefADSGoogle Scholar
  20. 20.
    A. A. Slingo, “GCM Parameterization for the Shortwave Radiative Properties of Water Clouds,” J. Atmos. Sci. 46(10), 1419–1427 (1989).CrossRefADSGoogle Scholar
  21. 21.
  22. 22.
    A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient Technique for Line-By-Line Calculating the Transmittance of the Absorbing Atmosphere,” Atmos. Ocean. Opt. 8(10), 847–850 (1995).Google Scholar
  23. 23.
    K. M. Firsov, A. A. Mitsel, Yu. N. Ponomarev, and I. V. Ptashnik, “Parametrization of Transmittanse for Application in Atmospheric Optics,” J. Quant. Spectrosc. Radiat. Trasfer 59(3–5), 203–213 (1998).CrossRefADSGoogle Scholar
  24. 24.
    K. M. Firsov, T. Yu. Chesnokova, V. V. Belov, A. B. Serebrennikov, and Yu. N. Ponomarev, “Exponential Series in Calculations of Radiative Transfer by the Monte Carlo Method in Spatially Inhomogeneous Aerosol-Gas Media,” Vychisl. Tekhnol. 7(5), 77–87 (2002).zbMATHMathSciNetGoogle Scholar
  25. 25.
    A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Optical Radiation Transfer in Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].Google Scholar
  26. 26.
    T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of Exponential Series to Model Wide-Band Fluxes of Solar Radiation in the Earth Atmosphere,” Opt. Atmosf. Okeana 20(9), 799–804 (2007).Google Scholar
  27. 27.
    K. M. Firsov and T. Yu. Chesnokova, “New Method For. Considering the Overlap of Atmospheric Gas Absorption Bands During Transfer Equation Parametrization,” Opt. Atmosf. Okeana 11(4), 410–415 (1998).Google Scholar
  28. 28.
    R. Robertc, J. Selby, and L. Biberman, Infrared Continuum Absorption by Atmospheric Water Vapor in the 8–12 μm Window,” Appl. Opt. 15(9), 2085–2090 (1976).CrossRefADSGoogle Scholar
  29. 29.
    V. N. Arefiev, “oMolecular Absorption and Extinction of Infrared Emission at the Atmosphere,” Thesis for a Doctor’s Degree (1990).Google Scholar
  30. 30.
    S. Clough, F. Kneizis, and R. Davies, “Line Shape and the Water Vapor Continuum,” Atmos. Res., No. 23, 229–241 (1989).Google Scholar
  31. 31.
    E. J. Mlawer, S. A. Clough, P. D. Brown, and D. S. Tobin, “Collision-Indused Effects and the Water Vapor Continuum,” in Proc. of the 8th ARM Science Team Meeting, Tuscon, Arisona, 1998, pp. 503–511.Google Scholar
  32. 32.
    Continuum Model, Radiative Transfer Working Group, http://rtweb.aer.com/continuum-description.html
  33. 33.
    T. B. Zhuravleva and K. M. Firsov, ““Algorithms for Calculating Spectral Fluxes of Solar Radiation in Cloudy and Clear Atmospheres,” Opt. Atmosf. Okeana 17(11), 903–911 (2004) [Atmos. Ocean. Opt. 17, 903 (2004)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. M. Firsov
    • 1
  • T. Yu. Chesnokova
    • 2
  • E. M. Kozodoeva
    • 2
  • A. Z. Fazliev
    • 2
  1. 1.Volgograd State UniversityVolgogradRussia
  2. 2.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations