Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 389–395 | Cite as

Transformation of the light backscattering matrices from crystal clouds during a variation of the zenith sensing angle

  • B. V. Kaul
  • I. V. Samokhvalov
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

Problems concerning the interpretation of the results of crystal cloud investigations by laser sensing are considered. The parameters characterizing the orientation of cloud particles are determined using backscattering matrix elements. It is shown how these parameters are related to the probability density of the particle distribution over the spatial orientation angles. The trends in the change of the backscattering matrices at variations of the zenith angle of a sensing path inclination are shown by the example of a monodisperse ensemble of ice particles.

Keywords

Oceanic Optic Reference Plane Mirror Reflection Cloud Particle Particle Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Kaul’, Optical Location Method of Polarization Investigations of Anisotropic Aerosol Media,” Extended Abstract of Doctoral Dissertation (IOA SO RAN, Tomsk, 2004) [in Russian].Google Scholar
  2. 2.
    G. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981; Inostr. Liter., Moscow, 1961).Google Scholar
  3. 3.
    Hu Chia-Ren, G. W. Kattawar, M. E. Parkin, and P. Herb, “Symmetry Theorems on the Forward and Backward Scattering Mueller Matrices for Light Scattering from a Non-Spherical Dielectric Scatter,” Appl. Opt. 26, 4159–4173 (1987).CrossRefADSGoogle Scholar
  4. 4.
    J. W. Hovenier and Van Der Mee, “Testing Scattering Matrices: A Compendium of Recipes,” J. Quant. Spectrosc. Radiat. Transf. 55, 649–661 (1996).CrossRefADSGoogle Scholar
  5. 5.
    B. V. Kaul’, “Symmetry of Light Backscattering Matrices Related to Orientation of Nonspherical Aerosol Particles,” Opt. Atmosf. Okeana 13, 895–900 (2000) [Atmos. Ocean. Opt. 13, 829–833 (2000)].Google Scholar
  6. 6.
    B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating Particle Orientation in Cirrus Clouds by Measuring Backscattering Phase Matrices with Lidar,” Appl. Opt. 43, 6620–6628 (2004).CrossRefADSGoogle Scholar
  7. 7.
    A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, New York, 1994; Mir, Moscow, 1978).zbMATHGoogle Scholar
  8. 8.
    B. V. Kaul’ and I. V. Samokhvalov, “Physical Factors Determined Spatial Orientation of Particles in Crystal Line Clouds,” Opt. Atmosf. Okeana 21, 27–34 (2008).Google Scholar
  9. 9.
    D. N. Romashov and R. F. Rakhimov, “Determination of the Axially Symmetric Elongated Particles Orientation from Data of Polarization Sounding,” Opt. Atmosf. Okeana 6, 891–898 (1993).Google Scholar
  10. 10.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  11. 11.
    D. N. Romashov, “Backscattering Matrix for Monodisperse Ensembles of Hexagonal Ice Crystals,” Opt. Atmosf. Okeana 12, 392–400 (1999) [Atmos. Ocean. Opt. 12, 376–384 (1999)].Google Scholar
  12. 12.
    V. Noel and K. Sassen, “Study of Planar Ice Crystal Orientation in Ice Clouds from Scanning Polarization Lidar Observations,” J. Appl. Meteorol. 44, 653–664 (2005).CrossRefADSGoogle Scholar
  13. 13.
    M. D. Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of Polarimetric Lidar for the Study of Oriented Iceplates in Clouds,” J. Appl. Opt. 45, 4878–4887 (2006).CrossRefADSGoogle Scholar
  14. 14.
    V. P. Galileiskii, A. G. Borovoi, G. G. Matvienko, and A. M. Morozov, “Specularly Reflected Component at Light Scattering by Ice Crystals with Predominant Orientation,” Opt. Atmosf. Okeana 21, 773–778 (2008) [Atmos. Ocean. Opt. 21, 668 (2008)].Google Scholar
  15. 15.
    A. Borovoi, V. Galileiski, A. Morozov, and A. Cohen, “Detection of Ice Crystal Particles Preferably Oriented in the Atmosphere by Use of the Specular Component of Scattered Light,” Opt. Express 16, 7625–7633 (2008).CrossRefADSGoogle Scholar
  16. 16.
    V. P. Galileiskii, B. V. Kaul’, G. G. Matvienko, and A. M. Morozov, “Angular Structure of the Light Intensity Near the Angles of Mirror Reflection from the Faces of Ice Crystalline Particles,” Opt. Atmosf. Okeana 22, 643–649 (2009) [Atmos. Ocean. Opt. 22, 506 (2009)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. V. Kaul
    • 1
  • I. V. Samokhvalov
    • 2
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations