Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 381–388 | Cite as

Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal

  • V. A. Banakh
  • A. Brewer
  • E. L. Pichugina
  • I. N. Smalikho
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


The possibility of measuring the wind velocity and direction with 2-μm pulsed coherent Doppler lidar in conditions of a weak echo signal is investigated. It is shown that the use of the filtered sine wave fitting of the lidar-measured radial wind velocities allows for the estimation of the wind velocity vector components with an acceptable accuracy at a low signal-to-noise ratio up to values of −20 dB.


Lidar Wind Velocity Lidar Data Sonic Anemometer Height Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Lhermitte and D. Atlas, “Precipitation Motion by Pulse Doppler Radar,” in Proc. of the 9th Weather Radar Conf. (Amer. Meteorol. Soc., Kansas City, MO, 1961), pp. 218–223.Google Scholar
  2. 2.
    R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observation (Academic, New York, 1984).Google Scholar
  3. 3.
    Ch. Werner, “Fast Sector Scan and Pattern Recognition for a CW Laser Doppler Anemometer,” Appl. Opt. 24, 3557–3564 (1985).CrossRefADSGoogle Scholar
  4. 4.
    J. G. Hawley, R. Tang, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent Launch-Site Atmospheric Wind Sounder: Theory and Experiment,” Appl. Opt. 32, 4557–4567 (1993).CrossRefADSGoogle Scholar
  5. 5.
    I. N. Smalikho, “Techniques of Wind Vector Estimation from Data Measured with a Scanning Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 20, 276–291 (2003).CrossRefADSGoogle Scholar
  6. 6.
    S. F. Clifford and S. Wandzura, “Monostatic Heterodyne Lidar Performance: The Effect of the Turbulent Atmosphere,” Appl. Opt. 20, 514–516 (1981).CrossRefADSGoogle Scholar
  7. 7.
    R. G. Frehlich and M. J. Kavaya, “Coherent Laser Radar Performance for General Atmospheric Refractive Turbulence,” Appl. Opt. 30, 5325–5352 (1991).CrossRefADSGoogle Scholar
  8. 8.
    D. S. Zrnic, “Estimation of Spectral Moments of Weather Echoes,” IEEE Trans. Geosci. Electron. 17, 113–128 (1979).CrossRefGoogle Scholar
  9. 9.
    R. Frehlich and M. J. Yadlowsky, “Performance of Mean-Frequency Estimators for Doppler Radar and Lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994).CrossRefADSGoogle Scholar
  10. 10.
    B. J. Rye and R. M. Hardesty, “Detecting Techniques for Validating Doppler Estimates in Heterodyne Lidar,” Appl. Opt. 36, 1940–1951 (1997).CrossRefADSGoogle Scholar
  11. 11.
    H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).zbMATHGoogle Scholar
  12. 12.
    P. Salamitou, A. Dabas, and P. H. Flamant, “Simulation in the Time Domain for Heterodyne Coherent Laser Radar,” Appl. Opt. 34, 499–506 (1995).CrossRefADSGoogle Scholar
  13. 13.
    R. Frehlich, “Effect of Wind Turbulence on Coherent Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).CrossRefADSGoogle Scholar
  14. 14.
    V. A. Banakh and I. N. Smalikho, “Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data,” Opt. Atmosf. Okeana 10, 1524–1538 (1997) [Atmosph. Ocean. Opt. 10 (12), 957 (1997)].Google Scholar
  15. 15.
    C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickman, “High-Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).CrossRefADSGoogle Scholar
  16. 16.
    N. Kelley, M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, “Lamar Low-Level Jet Program,” Interim NREL Report TP-500-34593 (Nat. Renewable Energy Labor., Golden, CO, 2004).Google Scholar
  17. 17.
    Y. L. Pichugina, R. M. Banta, N. D. Kelley, and W. A. Brewer, “Nocturnal Boundary Layer Height Estimate from Doppler Lidar Measurements,” in Proc. of the 18th Symp. on Boundary Layer and Turbulence, Stockholm, Sweden, June 2008, 7B.6.Google Scholar
  18. 18.
    V. A. Banakh, I. N. Smalikho, E. L. Pichugina, and A. Brewer, “Representativeness of Measurements of the Dissipation Rate of Turbulence Energy by Scanning Doppler Lidar,” Opt. Atmosf. Okeana 22, 966–972 (2009) [Atmosph. Ocean. Opt. 23, 48 (2010)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. A. Banakh
    • 1
  • A. Brewer
    • 2
  • E. L. Pichugina
    • 2
  • I. N. Smalikho
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations