Skip to main content

Use of a block-iterative algorithm for retrieving aerosol integral size distributions from sun spectrophotometry data

Abstract

A modified method is presented for retrieving aerosol integral size distributions in solar photometry problems. The presence of fine and coarse fractions of particles in the atmosphere is assumed. The initial matrix of the system is subdivided into four blocks in accordance with two particle fractions and two spectral regions, i.e., short and long wavelengths. Each of the two fractional integral size distributions is retrieved separately using a block-iterative inversion algorithm with a further iterative correction. The capabilities of the suggested method are numerically estimated in comparison with the results of the inversion for the entire particle ensemble.

This is a preview of subscription content, access via your institution.

References

  1. D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar-Photometer for Scientific Monitoring (Instrumentation, Techniques, Algorithms),” Opt. Atmosf. Okeana 14, 1162–1169 (2001).

    Google Scholar 

  2. V. V. Veretennikov, “Inverse Problems of Solar Photometry for Integral Aerosol Distributions. I. Theory and Numerical Experiment in Sub-Micron Range of Particle,” Opt. Atmosf. Okeana 19, 294–300 (2006) [Atmos. Ocean Opt. 19, 351 (2006)].

    Google Scholar 

  3. D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, S. M. Sakerin, and Yu. S. Turchinovich, “Information System for Network Solar Photometers,” Opt. Atmosf. Okeana 22, 61–67 (2009) [Atmos. Ocean. Opt. 22, 121 (2009)].

    Google Scholar 

  4. A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Regularizing Algoritms and A Priori Information (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  5. H. C. Van De Hulst, Light Scattering by Small Particles (Dover Publications, 1981; Inostr. Liter., Moscow, 1961).

  6. A. Angstrom, “Parameters of Atmospheric Turbidity,” Tellus 15, 64–75 (1964).

    Article  Google Scholar 

  7. S. M. Sakerin and D. M. Kabanov, “About Correlations between the Angström Formula Parameters and the Aerosol Optical Thickness of the Atmosphere in the Wave Length Range from 1 to 4 μm,” Opt. Atmosf. Okeana 20, 222–228 (2007).

    Google Scholar 

  8. D. Deirmenjian, Electromagnetic Scattering on Atmospheric Polydispersions (Am. Elsevier, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  9. V. V. Veretennikov, “Inverse Problems of Solar Photometry for Integral Aerosol Distributions. II. Separation Into Sub-Micron and Coarse Fractions,” Opt. Atmosf. Okeana 19, 301–307 (2006).

    Google Scholar 

  10. V. V. Veretennikov, “Simultaneous Determination of Aerosol Microstructure and Index of Refraction from Solar Photometry Data,” Opt. Atmosf. Okeana 20, 214–221 (2007).

    Google Scholar 

  11. V. V. Veretennikov, D. M. Kabanov, and S. M. Sakerin, Analysis of Parameters of Aerosol Microstructure According by Data of Solar Photometer Measurements during Summer Period over Tomsk, in Proc. of the 15th Working Group Aerosols of Siberia (IOA SO RAN, Tomsk, 2008), P. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Veretennikov, S.S. Men’shchikova, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veretennikov, V.V., Men’shchikova, S.S. Use of a block-iterative algorithm for retrieving aerosol integral size distributions from sun spectrophotometry data. Atmos Ocean Opt 23, 375–380 (2010). https://doi.org/10.1134/S1024856010050064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010050064

Keywords

  • Aerosol Optical Depth
  • Microstructure Parameter
  • Geometrical Cross Section
  • Inverse Problem Solution
  • Radiation Extinction