Skip to main content

Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds

Abstract

In the paper we present the results of computational experiments aimed to define the angular distributions for the polarized radiation scattered in a cloudy layer. The angular distributions for Stokes parameters were computed by Monte Carlo method for different optical models of water-drop and crystal clouds. The ulterior objective of the research is to develop effective techniques to study the particles shape and size by measuring angular characteristics of the scattered radiation emanating from clouds.

This is a preview of subscription content, access via your institution.

References

  1. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

    Google Scholar 

  2. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinian, B. A. Kargin, and B. S. Elepov, Monte Carlo Methods in Atmosperic Optics (Springer, Berlin, 1989).

    Google Scholar 

  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

    Google Scholar 

  4. U. G. Oppel and G. Czerwinski, “Multiple Scattering LIDAR Equation Including Polarization and Change of Wavelength,” Proc. SPIE 3571, 14–25 (1998).

    Article  ADS  Google Scholar 

  5. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Moscow, 2005) [in Russian].

    Google Scholar 

  6. U. G. Oppel and M. Wengenmayer, “A New Approach to Simulation of Lidar Multiple Scattering Returns and Time Resolved Diffusion Patterns of a Laser Beam Including Polarization,” in Proc. of the 14th Intern. Workshop on Multiple Scattering Lidar Experiments (MUSCLE XIV), Univ. Laval, Quebec, Canada, 4–7 Oct. 2005, (Defence R&D Canada, Valcartier, 2006), pp. 57–68.

    Google Scholar 

  7. M. Wengenmayer, “Monte Carlo Methods for Calculating Polarized CCD-LIDAR Returns from In-Homogenous Clouds,” PhD Thesis (Munich, 2008).

  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  9. H. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

    Google Scholar 

  10. G. W. Kattawar and G. N. Plass, “Radiance and Polarization of Multiple Scattered Light from Haze and Clouds,” Appl. Opt. 7, 1519–1527 (1968).

    Article  ADS  Google Scholar 

  11. G. A. Mikhailov and M. A. Nazaraliev, Izv. RAN, Fiz. Atmosf. Okeana 7, 385–395 (1971).

    Google Scholar 

  12. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment,” Appl. Opt. 38, 3399–3408 (1999).

    Article  ADS  Google Scholar 

  13. U. G. Oppel and H. Krasting, “Retrieval of Microphysical Parameters from Return Signals of Airborne and Space-Based LIDARs,” in Lidar Atmospheric Monitoring, Proc. of the Eur. Symp. on Environmental Sensing III, 16–20 June 1997, Fairgrounds Munich, GFR (Envi-roSense’97; LASER’97), Ed. by J.-P. Wolf, Proc. SPIE EUROPTO Ser. 3104, 135–144 (1997).

  14. S. Bartel and A. H. Hielscher, “Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media,” Appl. Opt. 39, 1580–1588 (2000).

    Article  ADS  Google Scholar 

  15. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo Programs of Polarized Light Transport Into Scattering Media: Part I,” Opt. Express 13, 4420–4438 (2005).

    Article  ADS  Google Scholar 

  16. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Amer. Elsevier, New York, 1969).

    Google Scholar 

  17. J. Ding and L. Xu, “Light Scattering Characteristics of Small Ice Circular Cylinders in Visible, 1.38-mm, and Some Infrared Wavelengths,” Opt. Eng. 41, 2252–2266 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Prigarin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prigarin, S.M., Oppel, U.G. Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds. Atmos Ocean Opt 23, 359–363 (2010). https://doi.org/10.1134/S1024856010050040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010050040

Keywords

  • Lidar
  • Angular Distribution
  • Optical Thickness
  • Oceanic Optic
  • Water Drop