Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 359–363 | Cite as

Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds

  • S. M. PrigarinEmail author
  • U. G. Oppel
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

In the paper we present the results of computational experiments aimed to define the angular distributions for the polarized radiation scattered in a cloudy layer. The angular distributions for Stokes parameters were computed by Monte Carlo method for different optical models of water-drop and crystal clouds. The ulterior objective of the research is to develop effective techniques to study the particles shape and size by measuring angular characteristics of the scattered radiation emanating from clouds.

Keywords

Lidar Angular Distribution Optical Thickness Oceanic Optic Water Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).Google Scholar
  2. 2.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinian, B. A. Kargin, and B. S. Elepov, Monte Carlo Methods in Atmosperic Optics (Springer, Berlin, 1989).Google Scholar
  3. 3.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).Google Scholar
  4. 4.
    U. G. Oppel and G. Czerwinski, “Multiple Scattering LIDAR Equation Including Polarization and Change of Wavelength,” Proc. SPIE 3571, 14–25 (1998).CrossRefADSGoogle Scholar
  5. 5.
    T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Moscow, 2005) [in Russian].Google Scholar
  6. 6.
    U. G. Oppel and M. Wengenmayer, “A New Approach to Simulation of Lidar Multiple Scattering Returns and Time Resolved Diffusion Patterns of a Laser Beam Including Polarization,” in Proc. of the 14th Intern. Workshop on Multiple Scattering Lidar Experiments (MUSCLE XIV), Univ. Laval, Quebec, Canada, 4–7 Oct. 2005, (Defence R&D Canada, Valcartier, 2006), pp. 57–68.Google Scholar
  7. 7.
    M. Wengenmayer, “Monte Carlo Methods for Calculating Polarized CCD-LIDAR Returns from In-Homogenous Clouds,” PhD Thesis (Munich, 2008).Google Scholar
  8. 8.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  9. 9.
    H. C. Van De Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).Google Scholar
  10. 10.
    G. W. Kattawar and G. N. Plass, “Radiance and Polarization of Multiple Scattered Light from Haze and Clouds,” Appl. Opt. 7, 1519–1527 (1968).CrossRefADSGoogle Scholar
  11. 11.
    G. A. Mikhailov and M. A. Nazaraliev, Izv. RAN, Fiz. Atmosf. Okeana 7, 385–395 (1971).Google Scholar
  12. 12.
    M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment,” Appl. Opt. 38, 3399–3408 (1999).CrossRefADSGoogle Scholar
  13. 13.
    U. G. Oppel and H. Krasting, “Retrieval of Microphysical Parameters from Return Signals of Airborne and Space-Based LIDARs,” in Lidar Atmospheric Monitoring, Proc. of the Eur. Symp. on Environmental Sensing III, 16–20 June 1997, Fairgrounds Munich, GFR (Envi-roSense’97; LASER’97), Ed. by J.-P. Wolf, Proc. SPIE EUROPTO Ser. 3104, 135–144 (1997).Google Scholar
  14. 14.
    S. Bartel and A. H. Hielscher, “Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media,” Appl. Opt. 39, 1580–1588 (2000).CrossRefADSGoogle Scholar
  15. 15.
    J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo Programs of Polarized Light Transport Into Scattering Media: Part I,” Opt. Express 13, 4420–4438 (2005).CrossRefADSGoogle Scholar
  16. 16.
    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Amer. Elsevier, New York, 1969).Google Scholar
  17. 17.
    J. Ding and L. Xu, “Light Scattering Characteristics of Small Ice Circular Cylinders in Visible, 1.38-mm, and Some Infrared Wavelengths,” Opt. Eng. 41, 2252–2266 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Comp. Mathematics and Math. GeophysicsSB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of MathematicsLudwig-Maximilian University of MunichMunichGermany

Personalised recommendations