Atmospheric and Oceanic Optics

, Volume 23, Issue 5, pp 339–343 | Cite as

Evolution of the effective characteristics of high-power femtosecond laser radiation in air under optical turbulence conditions. The Gaussian beam approximation

  • A. A. Zemlyanov
  • A. D. Bulygin
Optics of Stochastically-Heterogeneous Media


An analytical solution to the equation for the effective radius of a high-power femtosecond laser beam in the approximation of the intensity Gaussian profile during its self-focusing in air is found. This equation was derived based on the equation for the Wigner function of the laser radiation field in developed optical turbulence conditions. Estimates are presented of the global self-focusing distance versus the peak radiation power, as well as its divergence after the nonlinear focus.


Femtosecond Laser Wigner Function Femtosecond Laser Radiation Optical Turbulence High Power Femtosecond Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, and A. V. Kuzikovskii, High Power Laser Emission in Atmospheric Aerosol (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  2. 2.
    A. A. Zemlyanov and Y. E. Geints, “Zonal Model of Nonstationary Self-Focusing of Femtosecond Laser Radiation in Air: Effective Beam Characteristics Evolution,” Eur. Phys. J. D: At. Mol. Opt. Plasma Phys., Publ. Online doi:10.1140/epj/e2007-00008-X.Google Scholar
  3. 3.
    R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present (Springer Sci., Business Media, LLC, 2009).Google Scholar
  4. 4.
    S. N. Vlasov and V. I. Talanov, Self-Focusing of Waves (IPF RAN, Nizhn. Novgorod, 1997) [in Russian].Google Scholar
  5. 5.
    S. Skupin, L. Berge, U. Peschel, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Filamentation of Femtosecond Light Pulses in the Air: Turbulent Cells Versus Long-Range Clusters,” Phys. Rev. E 70, 046602–1 (2004).CrossRefADSGoogle Scholar
  6. 6.
    S. A. Shlenov, V. Yu. Fedorov, and V. P. Kandidov, “Filamentation of Chirped Femtosecond Laser Pulse at Kilometer-Range Paths in the Turbulent Atmosphere,” Opt. Atmosf. Okeana 20(4), 308–318 (2007) [Atmos. Ocean. Opt. 20, 275 (2007)].Google Scholar
  7. 7.
    A. D. Bulygin, A. A. Zemlyanov, and Yu. E. Geints, “Evolution of Effective Radius of Femtosecond Laser Beam After Its Global Self-Focusing in Air,” Opt. Atmosf. Okeana 20(11), 973–979 (2007).Google Scholar
  8. 8.
    E. Wigner, “On the Quantum Correction for Thermodynamic,” Phys. Rev. 40(6), 749–759 (1932).zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    A. A. Zemlyanov and A. D. Bulygin, “Effective Radius of Femtosecond Laser Emission under Its Self-Influence in a Gas Medium in Regime of Multiple Filamentation,” Opt. Atmosf. Okeana 21(12), 1064–1069 (2008).Google Scholar
  10. 10.
    V. N. Lugovoi and A. I. Prokhorov, “Possible Explanation of Small-Scale Filaments of Self Focusing,” JETP Lett. 7, 117–119 (1968).ADSGoogle Scholar
  11. 11.
    M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. A. Zemlyanov
    • 1
  • A. D. Bulygin
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations