Skip to main content

Influence of the overlapping of the atmospheric gas absorption spectra on the retrieval of the total methane content in the atmosphere from the transmission in the 1.6 to 1.7 μm spectral region

Abstract

The influence of the spectral lines of atmospheric gases on the retrieval of the methane concentration from the measurement of the solar radiation spectrum in the spectral region of 1.6–1.7 μm is studied. The modeling of the atmospheric transmission function for different vertical profiles of the methane and ethylene concentration in this range has shown the necessity of taking into account the ethylene spectral absorption lines in radiation calculations in this range in addition to the CH4, H2O, and CO2 usually taken into account.

This is a preview of subscription content, access via your institution.

References

  1. http://www.greenparty.ua/

  2. K. M. Firsov and T. Yu. Chesnokova, Influence of Variations in the CH4 and N2O Concentration on Long Wave Radiative Fluxes in the Earth’s Atmosphere, Opt. Atmosf. Okeana 12, 758–763 (1999).

    Google Scholar 

  3. C. Frankenberg, J. F. Meirink, Weele M. Van, U. Platt, and J. T. G. Wagner, “Assessing Methane Emission From Global Space-borne Observations,” Science 308(5724), 1010–1014 (2005).

    Article  ADS  Google Scholar 

  4. F. Keppler, J. T. G. Hamilton, M. Braz, and T. Rockmann, “Methane Emissions From Terrestrial Plants under Aerobic Conditions,” Nature (Gr. Brit.) 439(7073), 187–191 (2006).

    Article  ADS  Google Scholar 

  5. http://www.cfa.harvard.edu/HITRAN/

  6. T. Yu. Chesnokova, Yu. V. Voronina, Yu. N. Ponomarev, and V. A. Kapitanov, Influence of Interfering Gases Spectral Lines in the 1.61–1.67 μm Region on the Atmospheric Methane Total amount Retrieval, in Proc. of the 16th Intern. Symp. On Optics of Atmosphere and Ocean. Atmosphere Physics (IAO SB RAS, Tomsk, 2009), pp. 15–18.

    Google Scholar 

  7. C. Frankenberg, P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben, “Tropical Methane Emissions: A Revised View From SCIAMACHY Onboard ENVISAT,” Geophys. Res. Lett. 35, (2008) N 15.

  8. A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer. 105(2), 326–355 (2007).

    Article  ADS  Google Scholar 

  9. O. M. Lyulin, A. V. Nikitin, V. I. Perevalov, I. Morino, T. Yokota, K. Ryoichi, and W. Takeshi, “Measurements of N2- and O2-broadening and Shifting Parameters of Methane Spectral Lines in the 5550–6236 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer. 110, 654–668 (2009).

    Article  ADS  Google Scholar 

  10. M. A. H. Smith, Ch. D. Benner, A. Predoi-Cross, and V. Malathy Devi, “Multispectrum Analysis of 12CH4 in the ν4 Band: I. Air-broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing,” J. Quant. Spectrosc. Radiat. Transfer. 110, 639–653 (2009).

    Article  ADS  Google Scholar 

  11. H. Tran, P.-M. Flaud, T. Gabard, F. Hase, T. von Clarmann, C. Camy-Peyret, S. Payan, and J.-M. Hartmann, “Model, Software and Database for Line-mixing Effects in the ν3 and ν4 Bands of CH4 and Tests Using Laboratory and Planetary Measurements-I: N2 (and Air) Broadenings and the Earth Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer. 101, 284–305 (2006).

    Article  ADS  Google Scholar 

  12. H. Tran, P.-M. Flaud, T. Fouchet, T. Gabard, and J.-M. Hartmann, “Model, Software and Database for Line-mixing Effects in the ν3 and ν4 Bands of CH4 and Tests Using Laboratory and Planetary Measurements-II: H2 (and He) Broadening and the Atmospheres of Jupiter and Saturn,” J. Quant. Spectrosc. Radiat. Transfer. 101(2), 306–324 (2006).

    Article  ADS  Google Scholar 

  13. A. S. Pine and T. Gabard, “Multispectrum Fits for Line Mixing in the 3 Band Q Branch of Methane,” J. Mol. Spectrosc. 217(1), 105–114 (2003).

    Article  ADS  Google Scholar 

  14. I. M. Grigoriev, N. N. Filippov, M. V. Tonkov, T. Gabard, and R. Le Doucen, “Estimation of Line Parameters under Line Mixing Effects: The ν3 Band of CH4 in Helium,” J. Quant. Spectrosc. Radiat. Transfer. 69(2), 182–204 (2001).

    Article  ADS  Google Scholar 

  15. N. Jacquinet-Husson, N. A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. De Backer-Barilly, G. Di Lonardo, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Kopke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Regalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K. M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, Vl. G. Tyuterev, J. van der Auwera, P. Varanasi, and G. Wagn, “The GEISa Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. Radiat. Transfer. 109(6), 1043–1059 (2008).

    Article  ADS  Google Scholar 

  16. D. Pieroni, J. M. Hartmann, C. Camy-Peyret, P. Jeseck, and S. Payan, “Influence of Line Mixing on Absorption by CH4 in Atmospheric Balloonborne Spectra Near 3.3 mm,” J. Quant. Spectrosc. Radiat. Transfer. 68(2), 117–133 (2001).

    Article  ADS  Google Scholar 

  17. R. Rodrigues, K. W. Jucks, N. Lacome, G. Blanquet, J. Walrand, W. A. Traub, B. Khalil, R. Le Doucen, A. Valentin, C. Camy-Payret, L. Bonamy, and J. M. Hartmann, “Model, Software, and Database for Computation of Line-mixing Effects in Infrared Q-branches of Atmospheric CO2 I. Symmetric Isotopomers,” J. Quant. Spectrosc. Radiat. Transfer. 61(2), 153–184 (1999).

    Article  ADS  Google Scholar 

  18. K. W. Jucks, R. Rodrigues, Le R. Doucen, C. Claveaux, and J. M. Hartmann, “Model, Software, and Database for Computation of Line-mixing Effects in Infrared Q Branches of Atmospheric CO2. II. Minor and Asymmetric Isotopomers,” J. Quant. Spectrosc. Radiat. Transfer. 63(1), 31–48 (1999).

    Article  ADS  Google Scholar 

  19. F. Niro, K. W. Jucks, and J. M. Hartmann, “Spectra Calculations in Central and Wing Regions of CO2 IR Bands between 10 and 20 mm. IV: Software and Database for the Computation of Atmospheric Spectra,” J. Quant. Spectrosc. Radiat. Transfer. 95(4), 469–481 (2005).

    ADS  Google Scholar 

  20. D. Mondelain, S. Payan, Wenping Deng, C. Camy-Peyret, D. Hurtmans, and A. W. Mantz, “Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the ν3 Band of 12CH4 and Their Influence on Atmospheric Methane Retrievals,” J. Mol. Spectrosc. 244, 130–137 (2007).

    Article  ADS  Google Scholar 

  21. V. A. Kapitanov, K. Yu. Osipov, and Yu. N. Ponomarev, “Strong Interference of Spectral Lines of Methane in 1.65 mkm Band,” in Proc. of the 16th Intern. Symp. on Optics of Atmosphere and Ocean. Atmosphere Physics, Tomsk, 12–15 Oct. 2009.

  22. T. A. Dueck, R. DeVisser, H. Poorter, S. Persijn, A. Corrissen, W. DeVsser, A. Schapendonk, J. Verhagen, J. Snel, F. J. M. Harren, A. K. Y. Ngai, F. Verstappen, H. Bouwmeester, L. A. C. J. Voesenek, and A. Van Der Werf, “No Evidence for Substantial Aerobic Methane Emission by Terrestrial Plants: A 13C-labelling Approach,” New Phytologist. 175(1), 29–35 (2007).

    Article  Google Scholar 

  23. R. E. R. Nisbet, R. Fisher, R. H. Nimmo, D. S. Bendall, P. M. Crill, A. V. Gallego-Sala, E. R. C. Hornibrook, E. López-Juez, D. Lowry, P. B. R. Nisbet, E. F. Shuckburgh, S. Sriskantharajah, C. J. Howe, and E. G. Nisbet, “Emission of Methane From Plants,” Proc. R. Soc. B7 276, 1347–1354 (2009).

    Article  Google Scholar 

  24. B. G. Ageev, V. A. Kapitanov, Yu. N. Ponomarev, and V. A. Sapozhnikova, “Laser Gas-Analysis Study of CO2, Ethylene, and Methane Emissions by Plants,” Atmospheric and Oceanic Optics 20(9), 726–729 (2007).

    Google Scholar 

  25. V. A. Kapitanov and Yu. N. Ponomarev, “Laser Methanometer Measurements of Methane Emission by Plants in Aerobic Conditions,” Atmospheric and Oceanic Optics 19, 354–358 (2006).

    Google Scholar 

  26. V. A. Kapitanov, O. Yu. Nikiforova, and Yu. N. Ponomarev, “Evaluation of Systematic Errors in Methane Concentration Determination using Diode Laser Detector,” Atmospheric and Oceanic Optics 21(5), 375–383 (2008).

    Google Scholar 

  27. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL-TR-86-0110 (AFGL (OPI), Hanscom AFB, MA 01736).

  28. C. P. Rinsland, C. Paton-Walsh, N. B. Jones, D. W. T. Griffith, A. Goldman, S. W. Wood, L. Chiou, and A. Meier, “High Spectral Resolution Solar Absorption Measurements of Ethylene (C2H4) in a Forest Fire Smoke Plume Using HITRAN Parameters: Tropospheric Vertical Profile Retrieval,” J. Quant. Spectrosc. Radiat. Transfer. 96(2), 301–309 (2005).

    Article  ADS  Google Scholar 

  29. V. Marecal, E. D. Riviere, G. Held, S. Cautenet, and S. Freitas, “Modelling Study of the Impact of Deep Convection on the UTLS Air Composition — Part I: Analysis of Ozone Precursors,” Atmos. Chem. Phys. Discuss. 5, 9127–9168 (2005).

    Article  ADS  Google Scholar 

  30. A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient Technique for Line-by-Line Calculating the Transmittance of the Absorbing Atmosphere,” Atmospheric and Oceanic Optics 8, 847–848 (1995).

    Google Scholar 

  31. B. A. Fomin, “Effective Line-by-line Technique to Compute Radiation Absorption in Gases,” Preprint IAE-5658/1 Kurchatov Inst. (Moscow, 1993).

  32. D. P. Edwards, “GENLN2: a General Line-by-line Atmospheric Transmittance and Radiance Model,” Version 3.0, Description and User’s Guide: NCAR Technical Note NCAR/TN-367+STRB (Boulder, Colorado, 1992).

    Google Scholar 

  33. A. A. Mitsel and K. M. Firsov, “A Fast Line-by-line Method,” J. Quant. Spectrosc. Radiat. Transfer. 54(3), 549–557 (1995).

    Article  ADS  Google Scholar 

  34. G. P. Ayers and R. W. Gillett, “Isoprene Emissions From Vegetation and Hydrocarbon Emissions From Bushfires in Tropical Australia,” J. Atmos. Chem. 7, 177–190 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.Yu. Chesnokova, Yu.V. Voronina, Yu.N. Ponomarev, V.A. Kapitanov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chesnokova, T.Y., Voronina, Y.V., Ponomarev, Y.N. et al. Influence of the overlapping of the atmospheric gas absorption spectra on the retrieval of the total methane content in the atmosphere from the transmission in the 1.6 to 1.7 μm spectral region. Atmos Ocean Opt 23, 322–327 (2010). https://doi.org/10.1134/S1024856010040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010040123

Keywords

  • Forest Fire
  • Methane Emission
  • Methane Concentration
  • Oceanic Optic
  • Methane Content