Skip to main content

Gas filter technique in total SO2 content control


A numerical simulation of the estimation of the total atmospheric SO2 content using the optical remote gas filter technique has been carried out. The sensitivity of a ground-based gas filter instrument for measurements of the total atmospheric SO2 content using direct solar IT and UV radiation is analyzed. The spectral interferences are studied in the measurements in the UV region. The minimization method for the error caused by the influence of atmospheric ozone absorption has been developed. We show the possibility of using the optical remote gas filter technique for estimating the total atmospheric SO2 content at a level of its background content in unpolluted air and higher with the error caused by the spectral interferences of not higher than 30%.

This is a preview of subscription content, access via your institution.


  1. SCIAMACHY on ENVISAT, (Inst. of Environm. Phys. IUP, Inst. of Remote Sensing IFE)

  2. J. Geffen, M. Roozendael, M. Rix, and P. Valks, “Initial Validation of GOME-2 GDP 4.2 SO2 Total Columns (OTO/SO2),”, sensors, gome2, TN-IASB-GOME2-O3MSAF-ORR-B-SO2-v1r1.pdf.

  3. N. A. Krotkov, K. Yang, S. A. Carn, and A. Krueger, “EOS Aura Ozone Monitoring Instrument (OMI),” (Goddard Space Flight Center, 2006).

  4. L. L. Acton, M. Griggs, G. D. Hall, C. B. Ludwig, W. Malkmus, W. D. Hesketh, and H. Reichle, “Remote Measurement of Carbon Monoxide by a Gas Filter Correlation Instrument,” AIAA J. 11(7), 899–900 (1973).

    Article  ADS  Google Scholar 

  5. T. V. Ward and H. H. Zwick, “Gas Cell Correlation Spectrometer: GASPEC,” Appl. Opt. 14(12), 2896–2904 (1975).

    ADS  Google Scholar 

  6. J. H. Davies, A. R. Barringer, and R. Dick, “Gaseous Correlation Spectrometric Measurements,” in Optical and Laser Remote Sensing (Springer, Berlin, 1983), pp. 90–96.

    Google Scholar 

  7. B. T. Tolton and J. R. Drummond, “Measurements of the Atmospheric Carbon Monoxide Column with a Ground-Based Length-Modulator Radiometer,” Appl. Opt. 38(10), 1897–1909 (1999).

    Article  ADS  Google Scholar 

  8. S. F. Balandin, S. A. Starnovskii, and S. A. Shishigin, “Analysis of Possible Application of the Gas Light Filter Correlation Method to Space Measuring of Methan,” Opt. Atmosf. Okeana 21(10), 897–901 (2008).

    Google Scholar 

  9. V. P. Kabashnikov, A. A. Kurskov, and N. S. Makarevich, “To the Theory of Method of Nondispersive Correlation Spectroscopy,” Zh. Prikl. Spektrosk. 45(6), 965–970 (1986).

    Google Scholar 

  10. The HITRAN database (Sept. 18, 2009),

  11. Molspec group homepage, Inst. of Environmental Phys.

  12. B. Mayer, U. Hamann, C. Emde, and A. Kylling, “LibRadtran-Library for Radiative Transfer” (Dec. 24, 2008),

  13. A. N. Nikolaev, “Metrological Characteristics of Correlation Nondispersive Radiometer with Gas Filters,” in Remote Monitoring of Atmosphere Pollution and Ejections (Gidrometeoizdat, Moscow, 1991), No. 78, pp. 68–80 [in Russian].

    Google Scholar 

  14. V. V. Beloborodov, “Method of Spectral Compensation,” Appl. Opt. 41(18), 3517–3522 (2002).

    Article  ADS  Google Scholar 

  15. V. P. Kabashnikov and N. S. Metel’skaya, “Robustness of a Passive Nondispersive Correlation Spectroscopy Method for Atmospheric SI2 Determination,” Zh. Prikl. Spektrosk. 73(4), 525–529 (2006).

    Google Scholar 

  16. Optical filters, Newport corporation,

  17. Catalog of Light Filters, Photooptic-Filters,

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © N.S. Metel’skaya, V.P. Kabashnikov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Metel’skaya, N.S., Kabashnikov, V.P. Gas filter technique in total SO2 content control. Atmos Ocean Opt 23, 317–321 (2010).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Ozone
  • Optical Filter
  • Spectral Interference
  • Ozone Content
  • Ozone Monitoring Instrument