Skip to main content
Log in

Sinks, inflows, and the state of aerosol in the lower atmosphere of the Far Moscow region during winter months

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

According to observations during the winters of 2005–2007 in the central part of the European territory of Russia (ETR), the influxes, sinks, and the state of the atmospheric aerosol with a diameter D = 3–100 nm were determined primarily by the mixing conditions in the lower troposphere and the prehistory of the air masses. In contrast to the well-studied emissions of new aerosols (ENA) in the boreal forests of Northern Europe, in the mixed forests of the Central ETR, intense ENAs were observed not only in anticyclones but also in cyclones, as well during the change of atmospheric fronts. The time interval from the onset of the ENA to the time that the particle inflow reached a maximum was tens of minutes, whereas Northern Europe was characterized by time spans on the order of a few hours. The aerosol emissions were found to be less significantly related to the wind speed and direction, as well as with the state of the underlying surface. The occurrences of regular ENAs coincided with the onsets of the morning breakdown of nighttime near- ground inversions. The ENA stopped after the upper boundary of the inversion layer reached the 150- to 200-m level. In 50–60% of the episodes, the number N, area density S, and mass M concentrations of new particles reached N = (3–5) × 105 1/cm3, S = 200–330 μm2/cm3, and M = 50 μg/m3, a factor of 50–500 larger than the nighttime minima and a few orders of magnitude larger than the background values. Sinks of the aerosol particles to the underlying surface took place from the time of the formation of the evening inversions up to the beginning of the morning breakdown of the layer. For the analysis, we used the data of the electric spectrometers of aerosols with D = 3–1000 nm, data of acoustic sensing, and the vertical transects of the temperature and wind speed and direction at the atmospheric depth of 4–300 m measured during meteorological tower observations in Obninsk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Smirnov, “Aerosol Climate of the Moscow Suburbs,” Meteorol. Gidrol., No. 9, 37–49 (2003).

  2. K. Ya. Kondrat’ev, “From Nano to Global Scales: Properties, Processes of Formation and Consequences of the Atmospheric Aerosol Impact. 3. Processes of Aerosol Formation (Nucleation),” Opt. Atmosf. Okeana 17(10), 787–807 (2004).

    Google Scholar 

  3. K. Ya. Kondrat’ev, “Aerosol as a Climate-Forming Component of the Atmosphere. Pt. 1. Properties of Aerosols of Different Types,” Opt. Atmosf. Okeana 17(1), 5–24 (2004).

    Google Scholar 

  4. V. V. Smirnov, Ya. I. Sal’m, Yu. M. Myakela, and Yu. Paatero, “Dynamics of Atmospheric Aerosol, Ions and Minor Gases at Invasions of Arctic Air,” Opt. Atmosf. Okeana 17(1), 71–80 (2004).

    Google Scholar 

  5. S. G. Tsyro, “Regional Model of Formation, Transformation and Transfer of Aerosol Particles in Atmosphere,” Meteorol. Gidrol., No. 2, 34–46 (2008).

  6. V. V. Smirnov, “Study of Aerosol Emission at Continental Area of Russia,” in Proc. of the 17th Intern. Conf. on Nucleation and Atmospheric Aerosols, Galway, Ireland, 2007, Ed. by C. D. O’Dowd and P. E. Wagner (2007), pp. 777–781.

  7. V. V. Smirnov, “Nanoparticles in Boundary Layer: Seasonal and Daily Variations,” in Study of Processes in Lower Atmosphere Using High-Rise Building (Taifun, Obninsk, 2008), pp. 105–109 [in Russian].

    Google Scholar 

  8. G. J. Sem, “Electric Aerosol Analyzer: Operation, Maintenance and Application,” in Aerosol Measurement, Ed. by D. A. Lundgren et al. (Univ. of Florida, Gainesville, 1979), pp. 400–432.

    Google Scholar 

  9. R. J. Weber, J. J. Marti, P. H. McMurry, F. L. Eisele, D. J. Tanner, and A. Jefferson, “Measurement of New Particle Formation and Ultrafine Particle Growth Rates at a Clean Continental Sites,” J. Geophys. Res. D 102, 4375–4385 (1997).

    Article  ADS  Google Scholar 

  10. W. Birmili and A. Wiedensohler, “New Particle Formation in the Continental Boundary Layer: Meteorological and Gas Phase Parameter Influence,” Geophys. Res. Lett. 27, 3325–3328 (2000).

    Article  ADS  Google Scholar 

  11. M. Kulmala, H. Vehkamki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations,” J. Aerosol Sci. 35(2), 143–176 (2004).

    Article  Google Scholar 

  12. V. V. Smirnov, Ya. I. Sal’m, Yu. M. Myakela, and Yu. Paatero, “Explosive Occurrence of Extremely Small Aerosol Particles in the Atmosphere,” Meteorol. Gidrol., No. 4, 40–55 (2005).

  13. V. V. Smirnov, “Nature and Evolution of Ultrafine Aerosol Particles in the Atmosphere,” Izv. RAN, Fiz. Atmosf. Okeana 42, 723–748 (2006).

    Google Scholar 

  14. M. Dal Maso, L. Sogacheva, M. P. Anisimov, M. Arshinov, A. Baklanov, B. Belan, T. V. Khodzher, V. A. Obolkin, A. Staroverova, A. Vlasov, V. A. Zagaynov, A. Lushnikov, Y. S. Lyubovtseva, I. Riipinen, V.-M. Kerminen, and M. Kulmala, “Aerosol Particle Formation Events at Two Siberian Stations inside the Boreal Forest,” Boreal Environ. Res. 13(1), 81–92 (2008).

    Google Scholar 

  15. M. Yu. Arshinov, B. D. Belan, J.-D. Raris, G. O. Zadde, and D. V. Simonenkov, “Spatial and Temporal Variability of Microdisperse Aerosol Fraction over the Siberia Territory,” Opt. Atmosf. Okeana 21(12), 1015–1023 (2008).

    Google Scholar 

  16. V. V. Smirnov, A. V. Savchenko, and V. N. Ivanov, “Modification of Condensation Nuclei under Energy Impacts. 1. Ion-stimulated Nucleation,” Opt. Atmosf. Okeana 19(5), 404–412 (2006).

    Google Scholar 

  17. Y. M. Mäkelä, I. K. Koponen, P. Aalto, and M. Kulmala, “One-Year Data of Submicron Size Modes of Tropospheric Background Aerosol in Southern Finland,” J. Aerosol Sci. 31(5), 595–611 (2000).

    Article  Google Scholar 

  18. V. V. Smirnov, “On Mechanisms of Inflow and Runoff of Aerosol Particles in Lower Atmosphere,” in Study of Processes in Lower Atmosphere Using High-Rise Building (Taifun, Obninsk, 2008), pp. 171–174 [in Russian].

    Google Scholar 

  19. V. V. Smirnov, J. Salm, and J. M. Mäkelä, “Study of the Emission of Nanometer Aerosol Particles and Intermediate Air Ions in Atmospheric Boundary Layer,” in Proc. of the 16th Intern. Conf. on Nucleation and Atmospheric Aerosols-2004 (Kyoto, Japan, 2004), pp. 316–319.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Smirnov.

Additional information

Original Russian Text © V.V. Smirnov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, V.V. Sinks, inflows, and the state of aerosol in the lower atmosphere of the Far Moscow region during winter months. Atmos Ocean Opt 23, 293–302 (2010). https://doi.org/10.1134/S1024856010040081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010040081

Keywords

Navigation