Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 4, pp 266–269 | Cite as

Experimental study by the IR spectroscopy method of the interaction between ethylene and nanopores of various densities

  • Yu. N. Ponomarev
  • T. M. Petrova
  • A. M. Solodov
  • A. A. Solodov
  • A. F. Danilyuk
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

The combination vibrational bands ν5 + ν9 and ν1 + ν11 of ethylene absorption adsorbed by silica aerogel nanopores of different densities have been studied for the first time in the 5700- to 6300-cm−1 spectral region. The conducted measurements show significant differences between the spectra of ethylene in aerogels and ethylene in the gas phase, which consist of the change of the absorption band shapes, the shift of the band frequency, and the increase of the absorption intensity. It was concluded that in the studied pressure range of 88–952 mbar, the adsorbed ethylene is in the same structural state.

Keywords

Zeolite Ethylene Absorption Aerogel Sample Adsorbed Ethylene Silica Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Little, Infrared Spectra of Adsorbed Molecules (Academic, New York, 1966; Mir, Moscow, 1969).Google Scholar
  2. 2.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    I. Scheele, A. Conjusteau, C. Callegari, R. Schmied, K. K. Lehmann, and G. Scoles, “Near-Infrared Spectroscopy of Ethylene and Ethylene Dimer in Superfluid Helium Droplets,” J. Chem. Phys. 122(3), 104307-1–104307-4 (2005).ADSGoogle Scholar
  4. 4.
    U. Buck and B. Schmidta, “Frequency Shifts in Infrared Spectra of Ethylene Clusters,” J. Chem. Phys. 101(7), 6365–6366 (1994).CrossRefADSGoogle Scholar
  5. 5.
    W. Zhou, T. Yildirim, E. Durgun, and S. Ciraci, “Hydrogen Absorption Properties of Metal-Ethylene Complexes,” Phys. Rev. B 76, 085434-1–085434-9 (2007).ADSGoogle Scholar
  6. 6.
    T. Platz and W. Demtröder, “Sub-Doppler Optothermal Overtone Spectroscopy of Ethylene and Dichloroethylene,” Chem. Phys. Lett. 294, 397–405 (1998).CrossRefADSGoogle Scholar
  7. 7.
    M. Bach, R. Georges, M. Herman, and A. Perrin, “Investigation of the Fine Structure in Overtone Absorption Bands of 12C2H4,” Mol. Phys. 97(1), 265–277 (1999).CrossRefADSGoogle Scholar
  8. 8.
    Yu. N. Ponomarev and V. A. Kapitanov, “High Resolution Ethylene Absorption Spectrum between 6035 and 6210 cm−1,” Appl. Phys. B 90(2), 235–241 (2008).CrossRefADSGoogle Scholar
  9. 9.
    H. Liu and R. J. Hamers, “Stereoselectivity in Molecule-Surface Reactions: Adsorption of Ethylene on the Silicon (001) Surface,” J. Am. Chem. Soc. 119(32), 7593–7594 (1997).CrossRefGoogle Scholar
  10. 10.
    S. Namuangruk, P. Pantu, and J. Limtrakul, “Investigation of Ethylene Dimerization over Faujasite Zeolite by the ONIOM Method,” Chem. Phys. Chem. 6(7), 1333–1339 (2005).Google Scholar
  11. 11.
    Y.-Y. Huang, “Ethylene Complexes in Copper (l) and Silver (I) Y Zeolites,” J. Catal. 61(2), 461–476 (1980).CrossRefGoogle Scholar
  12. 12.
    V. Bernardet, A. Decrette, J. M. Simon, O. Bertrand, G. Weber, and J. P. Bellat, “Experimental and Simulated Infrared Spectroscopic Studies of the Interaction of Ethylene on a MFI Zeolite,” Mol. Phys. 102, 1859–1870 (2004).CrossRefADSGoogle Scholar
  13. 13.
    R. Georges, M. Bach, and M. Herman, “The Vibrational Energy Pattern in Ethylene (12C2H4),” Mol. Phys. 97(1), 279–292 (1999).CrossRefADSGoogle Scholar
  14. 14.
    Yu. N. Kharzheev, “Use of Silica Aerogels in Cherenkov Counters,” Fiz. Elem. Chastits At. Yadra 39(1), 271–325 (2008) [Phys. Part. Nucl. 39, 107 (2008)].Google Scholar
  15. 15.
    T. Inagaki, H. Yonenobu, and S. Tsuchikawa, “Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood,” Appl. Spectrosc. 62(8), 860–865 (2008).CrossRefADSGoogle Scholar
  16. 16.
    S. Tsuchikawa and S. Tsutsumi, “Adsorptive and Capillary Condensed Water in Biological Material,” J. Mater. Sci. Lett. 17(8), 661–663 (1998).CrossRefGoogle Scholar
  17. 17.
    Yu. N. Ronomarev, T. M. Retrova, A. M. Solodov, and A. A. Solodov, “Spectroscopic Properties of Some Atmospheric Gases in Aerogel Nanopores,” in Proc. of the 16th Intern. Symp. on High Resolution Molecular Spectroscopy, Pos. Listvyanka, July, 2009, p. 171.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. N. Ponomarev
    • 1
  • T. M. Petrova
    • 1
  • A. M. Solodov
    • 1
  • A. A. Solodov
    • 1
  • A. F. Danilyuk
    • 2
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations