Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 3, pp 236–240 | Cite as

Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media

  • I. P. Lukin
Adaptive and Integral Optics

Abstract

Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media are studied. The results of calculations by the method of smooth perturbations of the variance of phase fluctuations of the above type of beams in the turbulent atmosphere are presented. The effect of the relative weakening of Bessel-Gaussian beam phase fluctuations in comparison with the case of a plane wave is revealed. A weak dependence of the phase fluctuation variance on the parameters of the Gaussian beam factor is observed. Gaussian beam phase fluctuations are spatially inhomogeneous: the ratio of the variances of the beam phase fluctuations at an out-of-optical-axis point to those at its optical axis is minimum in the Bessel beam maxima and maximum in the minima.

Keywords

Gaussian Beam Inhomogeneous Medium Turbulent Atmosphere Bessel Beam Phase Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Pt. 2. Random Fields (Nauka, Moscow, 1978) [in Russian].Google Scholar
  2. 2.
    L. A. Chernov, Wave Propagation in a Random Medium (McGraw-Hill, New York, 1960; Nauka, Moscow, 1975).Google Scholar
  3. 3.
    V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill New York, 1961; Nauka, Moscow, 1967).Google Scholar
  4. 4.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in the Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. 5.
    M. S. Belen’kii, V. P. Lukin, V. L. Mironov, and V. V. Pokasov, Coherence of Laser Beams in the Atmosphere (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  6. 6.
    I. P. Lukin, “Light-Wave Fluctuations in a Dispersive Medium,” Kvantov. Elektron. 6, 1756–1760 (1979) [Sov. J. Quantum. Electron. 6, 1033 (1979)].Google Scholar
  7. 7.
    I. P. Lukin, “Correlation of Fluctuations of Frequency-Separated Waves in a Scattering Medium,” Opt. Spektrosk. 51, 1083–1087 (1981) [Opt. Spectrosc. 51, 598 (1981)].Google Scholar
  8. 8.
    I. P. Lukin, “Optic Waves Fluctuations Reflected by Mirror Objects in Scattering Atmosphere,” Opt. Atmosf. 2, 21–27 (1989).Google Scholar
  9. 9.
    F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss Beams,” Opt. Commun. 64, 491–495 (1987).CrossRefADSGoogle Scholar
  10. 10.
    J. Li, H. Lee, and E. Wolf, “New Generalized Bessel-Gaussian Beams,” J. Opt. Soc. Am. A 21, 640–646 (2004).CrossRefADSGoogle Scholar
  11. 11.
    O. Manela, M. Segev, and D. N. Christodoulides, “Nondiffracting Beams in Periodic Media,” Opt. Lett. 30, 2611–2613 (2005).CrossRefADSGoogle Scholar
  12. 12.
    D. Ling, J. Li, and J. Chen, “Analysis of Eigenfields in the Axicon-Based Bessel-Gauss Resonator by the Transfer-Matrix Method,” J. Opt. Soc. Am. A 23, 912–918 (2006).CrossRefADSGoogle Scholar
  13. 13.
    D. Ling, Ch. Li, and J. Li, “Eigenfields and Output Beams of an Unstable Bessel-Gauss Resonator,” Appl. Opt. 45, 4102–4108 (2006).CrossRefADSGoogle Scholar
  14. 14.
    J. J. Miret and C. J. Zapata-Rodrigues, “Diffraction-Free Beams with Elliptic Bessel Envelope in Periodic Media,” J. Opt. Soc. Am. B 25, 1–6 (2008).CrossRefADSGoogle Scholar
  15. 15.
    H. T. Eyyuboglu, “Propagation of Higher Order Bessel-Gaussian Beams in Turbulence,” Appl. Phys. B 88, 259–265 (2007).CrossRefADSGoogle Scholar
  16. 16.
    H. T. Eyyuboglu and F. Hardala “Propagation of Modified Bessel-Gaussian Beams in Turbulence,” Opt. Laser Technol. 40, 343–351 (2008).CrossRefADSGoogle Scholar
  17. 17.
    H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, and Y. Cai, “Scintillation Advantages of Lowest Order Bessel-Gaussian Beams,” Appl. Phys. B 92, 229–235 (2008).CrossRefADSGoogle Scholar
  18. 18.
    H. T. Eyyuboglu, E. Sermutlu, Y. Baykal, Y. Cai, and O. Korotkova, “Intensity Fluctuations in J-Bessel-Gaussian Beams of All Orders Propagating in Turbulent Atmosphere,” Appl. Phys. B 93, 605–611 (2008).CrossRefADSGoogle Scholar
  19. 19.
    Y. Zhang and T. Zhu, “Propagation of Helmholtz-Gauss Beams in Weak Turbulent Atmosphere,” Chin. Opt. Lett. 6, 79–82 (2008).CrossRefGoogle Scholar
  20. 20.
    B. Chen, Z. Chen, and J. Pu, “Propagation of Partially Coherent Bessel-Gaussian Beams in Turbulent Atmosphere,” Opt. Laser Technol. 40, 820–827 (2008).CrossRefADSGoogle Scholar
  21. 21.
    K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel-Gaussian Beams with Optical Vortices in Turbulent Atmosphere,” Opt. Express 16,21315–21320 (2008).CrossRefADSGoogle Scholar
  22. 22.
    Y. Baykal, H. T. Eyyuboglu, and Y. Cai, “Effect of Beam Type on the Scintillations: A Review,” Proc. SPIE 7200, 720002-1–15 (2009).Google Scholar
  23. 23.
    H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, O. Korotkova, and Y. Cai, “Scintillation Index of Modified Bessel-Gaussian Beams Propagating in Turbulent Media,” J. Opt. Soc. Am. A 26, 387–394 (2009).CrossRefADSGoogle Scholar
  24. 24.
    B. Chen and J. Pu, “Propagation of Gauss-Bessel Beams in Turbulent Atmosphere,” Chin. Phys. B 18, 1033–1039 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. P. Lukin
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations