Skip to main content

Creation of desired intensity distributions. Part 1: The Gerchberg-Saxton algorithm, hill-climbing algorithm, and their combination

Abstract

We consider the problem of the creation of the desired intensity distributions with the help of the Gerchberg-Saxton algorithm and hill-climbing algorithm with a constant and variable step. The efficiency of the algorithms for different input parameters is analyzed. For a better correction accuracy, two different hybrid methods are used: the first method consists of the successive use of the Gerchberg-Saxton algorithm after running the hill-climbing algorithm. In the second, more universal method, the Gerchberg-Saxton algorithm is built into the hill-climbing algorithm so that for each iteration of the latter there is a specified number of iterations of the former. The abovementioned algorithms treat the beams a few times more accurately when used in the hybrid regime than when used separately.

This is a preview of subscription content, access via your institution.

References

  1. C. E. Webb and J. D. C. Jones, Handbook of Laser Technology and Applications (Inst. Phys., Bristol, Philadelphia, 2004), Vol. 3, pp. 1559–1660.

    Book  Google Scholar 

  2. S. A. Akhmanov, M. A. Vorontsov, V. P. Kandidov, A. P. Sukhorukov, and S. S. Chesnokov, “Thermal Self-Action of Light Beams and Compensation Methods,” Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz. 23, 1–37 (1980).

    ADS  Google Scholar 

  3. W. M. Steen, Laser Material Processing (Springer, London, 2003).

    Google Scholar 

  4. O. Bryngdahl, “Optical Map Transformations,” Opt. Commun. 10(2), 164–166 (1974).

    Article  ADS  Google Scholar 

  5. N. Nakajima, “Phase-Retrieval System Using a Shifted Gaussian Filter,” J. Opt. Soc. Amer. A 15(2), 402–406 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik (Stuttgart) 35(2), 237–246 (1972).

    Google Scholar 

  7. J. R. Fienup, “Phase Retrieval Algorithms: A Comparison,” Appl. Opt. 21(15), 2758–2769 (1982).

    Article  ADS  Google Scholar 

  8. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (CRC Press, 2000), pp. 215–248.

  9. K. Nemoto, T. Fujii, N. Goto, T. Nayuki, and Y. Kanai, “Transformation of a Laser Beam Intensity Profile by a Deformable Mirror,” Opt. Lett. 21(3), 168–170 (1996).

    Article  ADS  Google Scholar 

  10. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006), pp. 269–303.

  11. J. R. Fienup, “Reconstruction of an Object from the Modulus of Its Fourier Transform,” Opt. Lett. 3(1), 27–29 (1978).

    Article  ADS  Google Scholar 

  12. M. T. Eismann, A. M. Tai, and J. N. Cederquist, “Iterative Design of a Holographic Beam Former,” Appl. Opt. 28, 2641–2650 (1989).

    Article  ADS  Google Scholar 

  13. G. Zhou, X. Yuan, P. Dowd, Y.-L. Lam, and Y.-C. Chan, “Design of Diffractive Phase Elements for Beam Shaping: Hybrid Approach,” J. Opt. Soc. Am. A 18(4), 791–800 (2001).

    Article  ADS  Google Scholar 

  14. V. P. Sivokon’, “Formation of Light Beams of Zadannoi Structure for Problems of Laser Technology,” Candidate’s Dissertation in Mathematical Physics (1986).

  15. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu Algorithm for Phase Retrieval in Nonunitary Transform System: A Comparison,” Appl. Opt. 33(2), 209–218 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Mikryukov, I.V. Il’ina, T.Yu. Cherezova, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikryukov, A.S., Il’ina, I.V. & Cherezova, T.Y. Creation of desired intensity distributions. Part 1: The Gerchberg-Saxton algorithm, hill-climbing algorithm, and their combination. Atmos Ocean Opt 23, 229–235 (2010). https://doi.org/10.1134/S1024856010030127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010030127

Keywords

  • Intensity Distribution
  • Phase Function
  • Hybrid Algorithm
  • Variable Step
  • Output Plane