Skip to main content

Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing

Abstract

Based on the statistical model of atmospheric aerosol, regression equations are derived for the values of the aerosol extinction ɛ a (λ) and backscattering βπa (λ) coefficients at wavelengths of 355, 532, and 1064 nm. The equations were tested using experimental and calculated AERONET data. The efficiency of the equations is estimated with the use of algorithms for retrieving the profiles of backscattering coefficients from the data of the three-frequency lidar sensing of the atmosphere via numerical experiments. A method of finding the volume concentration of the aerosol particles H 2.5 and H 10 corresponding to the standards for the mass concentrations of PM2.5 and PM10 is proposed based on the same stated multiple correlation between these characteristics and βπa (λ).

This is a preview of subscription content, access via your institution.

References

  1. U.S.EPA Guidance for Using Continuous Monitors in PM2.5 Monitoring Networks, OAQPS EPA-454/R-98-012 (May 1998).

  2. European Standard EN 12341, “Air Quality. Determination of the PM10 Fraction of Suspended Particulate Matter. Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods” (1998).

  3. G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Signals of Optical Sounding of Atmosphere (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  4. F. G. Fernald, “Analysis of Atmospheric Lidar Observation: Some Comments,” Appl. Opt. 23, 652–653 (1984).

    Article  ADS  Google Scholar 

  5. J. D. Klett, “Stable Analytic Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211–220 (1981).

    Article  ADS  Google Scholar 

  6. J. D. Klett, “Lidar Inversion with Variable Backscatter/Extinction Ratios,” Appl. Opt. 24, 1638–1643 (1985).

    Article  ADS  Google Scholar 

  7. V. A. Kovalev, “Functional Dependencies between Full and Inverse Scattering for Reconstruction of Attenuation Rate Profile According to Lidar Probing Data,” Opt. Atmosf. Okeana 5, 534–538 (1992).

    ADS  Google Scholar 

  8. M. M. Kugeiko and S. A. Lysenko, “Methodical Aspects of Reconstruction of Optical Atmosphere Characteristics from Results of Laser Location Measurements,” Opt. Atmosf. Okeana 19, 435–440 (2006).

    Google Scholar 

  9. K. Ya. Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Properties, Formation Processes and Interaction Conse-Quences of Atmospheric Aerosols: from Nano- to Global Scales (VVM, St.-Petersburg, 2007) [in Russian].

    Google Scholar 

  10. L. S. Ivlev and S. D. Andreev, Optical Properties of Atmospheric Aerosols (Leningr. Gos. Univ., Leningrad, 1986) [in Russian].

    Google Scholar 

  11. S. D. Andreev and L. S. Ivlev, “Modelling the Optical Characteristics of Aerosols of the Near-Ground Layer of the Atmosphere in the 0.3–15-μm Region. I. Model Construction Principles. II. Model Parameter Choice. III. Simulation Results,” Opt. Atmosf. Okeana 8, 788–795, 1227–1235, 1236–1243 (1995).

    Google Scholar 

  12. V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  13. A. V. Vasil’ev and L. S. Ivlev, “Optical Statistic Model of Atmosphere for Ladoga Lake Region,” Opt. Atmosf. Okeana 13, 198–203 (2000).

    Google Scholar 

  14. L. S. Ivlev, A. V. Vasil’ev, B. D. Belan, M. V. Panchenko, and S. A. Terpugova, “Optical Microphysical Models of Urban Aerosols,” in Proc. of the 3rd Intern. Conf. on Natural and Antropogeneous Aerosols, St.-Petersburg, 24–27 Sept. 2001, Ed. by L. S. Ivlev (NII Khim. SPbGU, 2003), pp. 161–170.

  15. L. Chunlei and M. H. Smith, “Urban and Rural Aerosol Particle Optical Properties,” Atmos. Environ. 29, 3293–3301 (1995).

    Article  Google Scholar 

  16. V. P. Ivanov, Applied Optics of Atmosphere in Thermovision (Novoe Znanie, Kazan, 2000) [in Russian].

    Google Scholar 

  17. C. Bohren and D. Huffman, Absorbtion and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  18. A. V. Vasil’ev, “Universal Algorithm for Calculating the Optical Characteristics of Homogeneous Spherical Aerosol Particles. II. Ensembles of Particles,” Vestn. SPbGU, Ser. Fiz. Khim. 1(4), 14–24 (1997).

    Google Scholar 

  19. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Principles of Atmosphere Optics (Nauka, St.-Petersburg, 2003) [in Russian].

    Google Scholar 

  20. C. Cattrall, J. Reagan, K. Thome, and O. Dubovic, “Variability of Aerosol Spectral Lidar and Backscatter and Extinction Ratio of Key Aerosol Types Derived from Selected Aerosol Robotic Network Locations,” J. Geophys. Res. 110, D10S11 (2005), Doi: 10.1029/2004JD005124.

    Article  Google Scholar 

  21. http://aeronet.gsfc.nasa.gov.

  22. V. A. Kolemaev and V. N. Kalinina, Probability Theory and Mathematical Statistics (INFRA-M, Moscow, 1997) [in Russian].

    Google Scholar 

  23. M. M. Kugeiko and D. M. Onoshko, Theory and Optical-Physical Diagnostic Methods for Heterogeneous Scattering Media (Bel. Gos. Univ., Minsk, 2003) [in Russian].

    Google Scholar 

  24. R. Mezheris, Laser Remote Probing (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  25. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, “Raman Lidar Measurements of Aerosol Extinction and Backscattering 1. Methods and Comparisons,” J. Geophys. Res. D 103(16), 19663–19672 (1998).

    Article  ADS  Google Scholar 

  26. V. E. Zuev and I. E. Naats, Inverse Problems of Atmosphere Optics (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Lysenko, M.M. Kugeiko, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lysenko, S.A., Kugeiko, M.M. Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing. Atmos Ocean Opt 23, 222–228 (2010). https://doi.org/10.1134/S1024856010030115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010030115

Keywords

  • Lidar
  • Aerosol Particle
  • Atmospheric Aerosol
  • Size Distribution Function
  • Microphysical Parameter