Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 2, pp 161–163 | Cite as

High-resolution ground measurements of the IR spectra of solar radiation

  • A. V. Poberovskii
Optical Instrumentation

Abstract

A new ground-based spectral complex for high-resolution measurements of the solar radiation spectra with a Bruker IFS-125 Fourier spectrometer is described. The main characteristics of the complex are presented. The examples of the measured solar radiation spectra in different IR ranges, as well as examples of the determination of the HF total content in the St. Petersburg region in January 2009 are given.

Keywords

Fourier Spectrometer High Resolution Measurement Spectral Complex Solar Radiation Spectrum Petersburg Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. E. Fowle, “The Spectroscopic Determination of Aqueous Vapor,” Astrophys. J. 35, 149 (1912).CrossRefADSGoogle Scholar
  2. 2.
    R. Zander, E. Mahieu, P. Demoulin, P. Duchatelet, G. Roland, C. Servaics, M. De Maziere, S. Reimann, and C. P. Risland, “Our Changing Atmosphere: Evidence Based on Long-term Infrared Solar Observations at the Jungfraujoch since 1950,” Sci. Total Environ. 391, 184–195 (2008).CrossRefGoogle Scholar
  3. 3.
    M. V. Migeotte, “The Fundamental Band of Carbon Monoxide at 4.7 μm in the Solar Spectrum,” Phys. Rev. 75, 1108–1109 (1949).CrossRefADSGoogle Scholar
  4. 4.
    P. Demoulin, C. Servais, F. Melen, and R. Zander, “The Laboratory of Atmospheric and Solar Physics of the University of Liege at Jungfraujoch,” Intern. Foundation HFSJG, Activity Report 1999/2000 (2001), p. 16.Google Scholar
  5. 5.
    J. H. Shaw, “A Determination of the Abundance of N2O, CO, and CH4 in Ground Level Air at Several Location Near Colombus,” Rep. No. 1, Contract AF19(604)-2259, AFCRL (Ohio Sci., 1959).Google Scholar
  6. 6.
    V. I. Dianov-Klokov, “Spectroscopic Studies of the Gas Admixture Background Content in the Atmosphere,” Vestn. AN SSSR 4(1), 33 (1980).Google Scholar
  7. 7.
    V. I. Dianov-Klokov, L. N. Yurganov, Ye. I. Grechko, and A. V. Dzhola, “Spectroscopic Measurements of Atmospheric Carbon Dioxide and Methane. 1. Latitudinal Distribution,” J. Atmos. Chem. 8, 139–151 (1989).CrossRefGoogle Scholar
  8. 8.
    WMO, Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report (Geneva, Switzerland, 2007), No. 50, p. 572.Google Scholar
  9. 9.
  10. 10.
    V. N. Aref’ev, N. E. Kamenogradskii, and F. V. Kashin, “Systematic Measurements of the Concentration of Carbon Dioxide in the Atmosphere,” Izv. AN SSSR, Fiz. Atmosf. Okeana 26, 584 (1990).Google Scholar
  11. 11.
    A. V. Mironenkov, A. V. Poberovskii, and Yu. M. Timofeev, “Spectroscopic Measurements of the Total Methane Content in the Atmosphere over St. Petersburg,” Izv. AN SSSR, Fiz. Atmosf. Okeana 32, 471 (1996).Google Scholar
  12. 12.
    A. V. Poberovskii, A. V. Polyakov, and Yu. M. Timofeev, “Measurements of Total Content of HF over St. Petersburg, Izv. RAN, Fiz. Atmosf. Okeana (in press).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Poberovskii
    • 1
  1. 1.St. Petersburg State UniversityPetergof, St. PetersburgRussia

Personalised recommendations