Atmospheric and Oceanic Optics

, Volume 23, Issue 2, pp 152–160 | Cite as

Technique for the local estimation of fluxes in broadband lazer sensing problems

  • G. M. Krekov
Optical Instrumentation


Using the Monte Carlo method, we solve the problem of evaluating spatially resolved signals of a broadband pulse emitter in the aerosol atmosphere with accounting for selective molecular absorption. Such a problem originates due to the necessity of the a priori analysis of the potentiality of white-light lidars for the remote sensing of the atmospheric concentrations of H2O vapors and greenhouse gases. The estimation of the backscattering signals with a high spectral resolution on the basis of the nonstationary transfer equation requires the use of precision computation algorithms. In the theory of the Monte Carlo methods, such an algorithm is the method of the local estimation of fluxes. We suggest combining this algorithm with a high-precision line-by-line computation of the transmission functions of atmospheric gases, which provides the possibility of a rigorous quantitative forecast of the efficiency of promising environmental monitoring lidar systems.


Lidar High Spectral Resolution Atmospheric Optic Photon Path Spectral Line Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Malkevich, Optical Study of the Atmosphere from Satellites (Nauka, Moscow, 1973) [in Russian].Google Scholar
  2. 2.
    A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Optical Radiation Transfer in Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].Google Scholar
  3. 3.
    V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  4. 4.
    R. M. Goody and Y. L. Yung, Atmospheric Radiation. Theoretical Basis (Oxford Univ., New York, 1989).Google Scholar
  5. 5.
    K. Ya. Kondrat’ev, The Transfer of Long-wave Radiation in the Atmosphere (Gosizdat, Moscow, 1950) [in Russian].Google Scholar
  6. 6.
    V. E. Zuev and M. V. Kabanov, Transfer of Optical Sygnals in the Earth’s Atmosphere (Sov. Radio, Moscow, 1977) [in Russian].Google Scholar
  7. 7.
    L. M. Romanova, “Limit Cases of the Free Path Distribution Function of Photons Exiting a Thick Light-diffusing Layer,” Izv. AN SSSR, Fiz. Atmosf. Okeana 1, 599 (1965).Google Scholar
  8. 8.
    W. M. Irvine, “The Formation of Absorption Bands and the Distribution of Photon Optical Paths in Scattering Atmosphere,” Bull. Astron. Inst. Nether. 17(1), 266 (1964).MathSciNetADSGoogle Scholar
  9. 9.
    M. M. Krekova, G. M. Krekov, G. A. Titov, and E. M. Feigel’son, “Possibilities of Calculating the Spectral Albedo of Venus in the Near Infrared Region,” Kosm. Issled. 11(3), 607 (1973).ADSGoogle Scholar
  10. 10.
    V. E. Zuev and G. A. Titov, Atmospheric Optics and the Climate (Gidrometeoizdat, Leningrad, 1996) [in Russian].Google Scholar
  11. 11.
    P. T. Partain, A. K. Heidinger, and G. L. Stephens, “High Spectral Resolution Atmospheric Radiative Transfer: Application of the Equivalence Theorem,” J. Geophys. Res. D 105, 2163 (2000).CrossRefADSGoogle Scholar
  12. 12.
    R. A. McClatchey, R. W. Fenn, and J. E. Selby, “Optical Properties of the Atmosphere,” 3d ed., Report AFCRL-72-0497 (AFCRL, Bedford, 1972).Google Scholar
  13. 13.
    N. I. Moskalenko, “Experimental Studies of Transparency of H2O, CO2, CH4, NO2, and CO Vapours in Conditions of Artificial Atmosphere,” Izv. AN SSSR, Fiz. Atmosf. Okeana 5, 262 (1969).Google Scholar
  14. 14.
    N. I. Moskalenko and S. O. Mirumyants, “Calculation Methods of Spectral Absorption of IR Radiation by Atmospheric Gases,” Izv. AN SSSR, Fiz. Atmosf. Okeana 6, 1110 (1970).Google Scholar
  15. 15.
    B. A. Kargin, L. D. Krasnokutskaya, and G. M. Krekov, “Spectral Reflection and Transmittance by Clouds of Solar Radiation Including Absorption Bands of Atmospheric Gases,” in Light Scattering in Earth’s Atmosphere (Nauka, Alma-Ata, 1972), pp. 192–195 [in Russian].Google Scholar
  16. 16.
    B. A. Kargin, Statistical Simulation of the Solar Radiation Field in Atmosphere (VTs SO AN SSSR, Novosibirsk, 1984) [in Russian].Google Scholar
  17. 17.
    A. A. Mitsel’ and K. M. Firsov, “Fast Methods of Absorption Function Calculation,” Izv. AN SSSR, Fiz. Atmosf. Okeana 23, 1221 (1987).Google Scholar
  18. 18.
    V. M. Osipov, “Fast Method of Calculation of Spectral Transmittance Functions for Inhomogeneous Atmospheric Trasses,” Izv. AN SSSR, Fiz. Atmosf. Okeana 23(11), 140 (1987).Google Scholar
  19. 19.
    T. Yu. Chesnokova and K. M. Firsov, “Application of Exponent Raws for Modelling of Wide-Band Fluxes of Solar Radiation in Earth’s Atmosphere,” Opt. Atmosf. Okeana 20, 799 (2007).Google Scholar
  20. 20.
    M. Matricardi, G. Masiello, and C. Serio, “An Intercomparison of Line-by-line Models Using Different Molecular Databases,”
  21. 21.
    M. Matricardi, F. Chevallier, G. Kelly, and J.-N. Thepaut, “An Improved General Fast Radiative Transfer Model for the Assimilation of Radiance Observations,” Quart. J. Roy. Meteorol. Soc. 130(11), 153 (2004).CrossRefADSGoogle Scholar
  22. 22.
    B. A. Fomin, “Effective Interpolation Technique for Line-by-line Calculation of Radiation Absorption in Gases,” J. Quant. Spectrosc. Radiat. Transfer. 53, 663 (1995).CrossRefADSGoogle Scholar
  23. 23.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor Fransis, London, 2002).Google Scholar
  24. 24.
    L. S. Rothman, D. Jacquemart, A. Barbe, B. D. Chris, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HIT-RAN 2004 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139 (2005).CrossRefADSGoogle Scholar
  25. 25.
    N. Jacquinet-Husson, N. A. Scott, A. Chedin, K. Garceran, R. Armante, A. A. Chursin, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. Debacker-Barilly, J.-M. Flaud, A. Goldman, A. Hamdouni, M. Hess, D. Jacquemart, P. Kopke, J.-Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V. I. Perevalov, L. Regalia-Jarlot, A. Rublev, F. Schreier, I. Schult, K. M. Smith, S. A. Tashkun, J.L. Teffo, R. A. Toth, Vl. G. Tyuterev, J. Vander Auwera, P. Varanasi, and G. Wagner, “The 2003 Edition of the GEISA / IASI Spectroscopic Data-base,” J. Quant. Spectrosc. Radiat. Transfer. 95, 429 (2005).ADSGoogle Scholar
  26. 26.
    K. Ya. Kondrat’ev and Yu. M. Timofeev, Thermal Probing of Atmosphere from Satellites (Gidrometeoizdat, Leningrad, 1970) [in Russian].Google Scholar
  27. 27.
    A. A. Mitsel’, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient Technique for Line-by-line Calculating the Transmittance of the Absorbing Atmosphere,” Opt. Atmosf. Okeana 8(10), 1547 (1995).Google Scholar
  28. 28.
    Informational Program Support of Atmospheric Optics Problems, Ed. by G. M. Krekov (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  29. 29.
    U. Platt, in Air Pollution Monitoring Systems-Past-Present-Future, Advanced Environmental Monitoring, Ed. by Y. J. Kim and U. Platt (Springer, Berlin, Heidelberg, 2008), pp. 3–20.Google Scholar
  30. 30.
    G. A. Mikhailov, Some Questions of Theory of Monte-Carlo Methods (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  31. 31.
    G. A. Mikhailov, Optimization of Weighted Monte-Carlo Methods (Nauka, Moscow, 1987; Springer, Berlin, Heidelberg, 1992).Google Scholar
  32. 32.
    Monte-Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  33. 33.
    G. M. Krekov, G. A. Mikhailov, and B. A. Kargin, “On Monte Carlo Algorithms for Solving Problems of the Theory of the Narrow Light Beam Propagation,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 110 (1968).Google Scholar
  34. 34.
    P. Rairoux, H. Schillinger, and S. Niedermeier, “Remote Sensing of the Atmosphere Using Ultrashort Laser Pulses,” Appl. Phys. B 71, 573 (2000).CrossRefADSGoogle Scholar
  35. 35.
    H. Wille, M. Rodrigues, and J. Kasparian, “Teramobile: A Mobile Femtosecond-terawatt Laser and Detection System,” Eur. Phys. J. Appl. Phys. 20, 183 (2002).CrossRefADSGoogle Scholar
  36. 36.
    M. Dell’Aglio, A. Kholdnykh, R. Lassandro, and O. De Pascale, “Development of a Ti: Sapphire DIAL System for Pollutant Monitoring and Meteorological Applications,” Opt. Lasers Eng. 37, 233 (2002).CrossRefGoogle Scholar
  37. 37.
    G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, “Estimate of the Promising White-light Lidar Efficiency for Sensing of the Stratus Cloud Microphysical Parameters: 3. Inverse Problem Solution,” Opt. Atmosf. Okeana 22, 862 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. M. Krekov
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations