Skip to main content

Lidar investigations of the effects of wind and atmospheric turbulence on an aircraft wake vortex

Abstract

The effects of wind and atmospheric turbulence on an aircraft wake vortex are studied experimentally. A 2-μm coherent Doppler lidar is used for measuring the parameters of the aircraft vortices, wind, and turbulence. The results are presented of lidar measurements of aircraft vortex parameters at different wind velocities and turbulence levels. An empirical dependence of the aircraft vortex lifespan on the dissipation rate of atmospheric turbulence energy has been obtained from the experimental data for the first time.

This is a preview of subscription content, access via your institution.

References

  1. T. Gerz, F. Holzapfel, and D. Darracq, “Commercial Aircraft Wake Vortices,” Progr. Aerospace Sci. 38, 181 (2002d).

    Article  ADS  Google Scholar 

  2. S. C. Crow, “Stability Theory for a Pair of Trailing Vortices,” AIAA J. 8, 2172 (1970).

    Article  ADS  Google Scholar 

  3. M. R. Brashears and J. N. Hallock, “Aircraft Wake Vortex Transport Model,” J. Aircraft. 11, 256 (1974).

    Article  Google Scholar 

  4. S. C. Crow and E. R. Bate, Jr., “Lifespan of Trailing Vortices in a Turbulent Atmosphere,” J. Aircraft. 13, 476 (1976).

    Article  Google Scholar 

  5. A. M. Hecht, A. J. Bilanin, J. E. Hirsh, and R. S. Snedeker, “Turbulent Vortices in Stratified Fluids,” AIAA J. 18, 738 (1980).

    Article  ADS  Google Scholar 

  6. G. C. Greene, “An Approximate Model of Vortex Decay in the Atmosphere,” J. Aircraft. 23, 566 (1986).

    Article  MathSciNet  Google Scholar 

  7. T. Sarpkaya and J. J. Daly, “Effect of Ambient Turbulence on Trailing Vortices,” J. Aircraft. 24, 399 (1987).

    Article  ADS  Google Scholar 

  8. R. E. Robins and D. P. Delisi, “Numerical Study of Vertical Shear and Stratification Effect on the Evolution of a Vortex Pair,” AIAa J. 28, 661 (1990).

    Article  ADS  Google Scholar 

  9. V. Schilling, S. Siano, and D. Elting, “Dispersion of Aircraft Emissions Due to Wake Vortices in Stratified Shear Flows: A Two-dimensional Numerical Study,” Geophys. Res. D 101, 965 (1996).

    Google Scholar 

  10. T. Hofbauer and T. Gerz, “Effect of Nonlinear Shear on the Dynamics of a Counter-Rotating Vortex Pair,” in Proc. of the 1st Intern. Symp. for Turbulence and Shear Flow Phenomena, Santa Barbara, USA, 12–15 Sept. 1999.

  11. F. Holzapfel, “Probabilistic Two-phase Wake Vortex Decay and Transport Model,” J. Aircraft. 40, 323 (2003).

    Article  Google Scholar 

  12. F. Holzapfel, T. Hofbauer, D. Darracq, H. Moet, F. Garnier, and C. Ferreira Gago, “Analysis of Wake Vortex Decay Mechanisms in the Atmosphere,” Aerospace Sci. Technol. 7, 263 (2003).

    Article  Google Scholar 

  13. F. Holzapfel and R. E. Robins, “Probabilistic Twophase Aircraft Wake-vortex Model: Application and Assessment,” J. Aircraft. 41, 1 (2004).

    Article  Google Scholar 

  14. F. Kopp, R. L. Schwiesow, and Ch. Werner, “Remote Measurements of Boundary Layer Wind Profiles Using a Cw Doppler Lidar,” J. Climate Appl. Meteorol. 23, 148 (1984).

    Article  ADS  Google Scholar 

  15. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, “Wind Measurement Accuracy of the NOAA Pulsed Infrared Doppler Lidar,” Appl. Opt. 23, 2503 (1984).

    Article  ADS  Google Scholar 

  16. J. G. Hawley, R. Tang, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent Launch-site Atmospheric Wind Sounder: Theory and Experiment,” Appl. Opt. 32, 4557 (1993).

    Article  ADS  Google Scholar 

  17. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-μm Coherent Doppler Lidar for Wind Measurements,” J. Atmos. Ocean. Technol. 11, 1517 (1994).

    Article  ADS  Google Scholar 

  18. Ch. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, Ph. Drobinski, B. Romand, Ch. Boitel, D. Oh, M. Lopez, M. Meissonner, D. Bruneau, and A. Dabas, “Wind Infrared Doppler Lidar Instrument,” Opt. Eng. 40, 115 (2001).

    Article  ADS  Google Scholar 

  19. I. N. Smalikho, “Techniques of Wind Vector Estimation from Data Measured with a Scanning Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 20, 276 (2003).

    Article  ADS  Google Scholar 

  20. T. Gal-Chen, M. Xu, and W. L. Eberhard, “Estimations of Atmospheric Boundary Layer Fluxes and Other Turbulence Parameters from Doppler Lidar Data,” Geophys. Res. D 97(17), 409 (1992).

    Google Scholar 

  21. V. A. Banakh, I. N. Smalikho, F. Kopp, and Ch. Werner, “Measurements of Turbulent Energy Dissipation Rate with a Cw Doppler Lidar in the Atmospheric Boundary Layer,” J. Atmos. Ocean. Technol. 16, 1044 (1999).

    Article  ADS  Google Scholar 

  22. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler Lidar Measurements of Wind Field Statistics,” Boundary-Layer Meteorol. 86, 223 (1998).

    Article  ADS  Google Scholar 

  23. R. Frehlich and L. Cornman, “Estimating Spatial Velocity Statistics with Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 19, 355 (2002).

    Google Scholar 

  24. I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of Atmospheric Turbulence by 2-μm Doppler Lidar,” J. Atmos. Ocean. Technol. 22, 1733 (2005).

    Article  ADS  Google Scholar 

  25. S. M. Hannon and J. A. Thomson, “Aircraft Wake Vortex Detection and Measurement with Pulsed Solidstate Coherent Laser Radar,” J. Mod. Opt. 41, 2175 (1994).

    Article  ADS  Google Scholar 

  26. G. Constant, R. Foord, P. A. Forrester, and J. M. Vaughan, “Coherent Laser Radar and the Problem of Aircraft Wake Vortices,” J. Mod. Opt. 41, 2153 (1994).

    Article  ADS  Google Scholar 

  27. P. B. Brockman, C. Barker, G. J. Koch, D. P. C. Nguyen, and C. L. Britt, “Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area,” in Proc. of the 10th Coherent Laser Radar Technology and Applications Conf. (Mount Hood, OR, 1999), pp. 12–15.

  28. F. Kopp, “Wake-vortex Characteristics of Military-type Aircraft Measured At Airport Oberpfaffenhofen Using the DLR Laser Doppler Anemometer,” Aerospace Sci. Technol. 3(4), 191 (1999).

    Article  Google Scholar 

  29. M. Harris, R. I. Young, F. Kopp, A. Dolfi, and J.-P. Cariou, “Wake Vortex Detection and Monitoring,” Aerospace Sci. Technol. 6, 325 (2002).

    Article  Google Scholar 

  30. F. Kopp, I. N. Smalikho, S. Rahm, A. Dolfi, J.-P. Cariou, M. Harris, R. I. Young, K. Weekes, and N. Gordon, “Characterization of Aircraft Wake Vortices by Multiple-lidar Triangulation,” AIAA J. 41, 1081 (2003).

    Article  ADS  Google Scholar 

  31. F. Kopp, S. Rahm, and I. N. Smalikho, “Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar,” J. Atmos. Ocean. Technol. 21, 194 (2004).

    Article  ADS  Google Scholar 

  32. F. Kopp, S. Rahm, I. N. Smalikho, A. Dolfi, J.-P. Cariou, M. Harris, and R. I. Young, “Comparison of Wakevortex Parameters Measured by Pulsed and Continuous-wave Lidars,” J. Aircraft. 42, 916 (2005).

    Article  Google Scholar 

  33. S. Rahm, I. N. Smalikho, and F. Kopp, “Characterization of Aircraft Wake Vortices by Airborne Coherent Doppler Lidar,” J. Aircraft. 44, 799 (2007).

    Article  Google Scholar 

  34. S. Rahm and I. N. Smalikho, “Aircraft Wake Vortex Measurement with Airborne Coherent Doppler Lidar,” J. Aircraft. 45, 1148 (2008).

    Article  Google Scholar 

  35. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2 μm Using Solid-state Lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).

    Article  ADS  Google Scholar 

  36. I. N. Smalikho and Sh. Ram, “Aircraft Wake Vortices Parameter Measurement with Coherent Doppler Lidar,” Opt. Atmosf. Okeana 21, 977 (2008).

    Google Scholar 

  37. F. Holzapfel, T. Gerz, F. Kopp, E. Stumpf, M. Harris, R. I. Young, and A. Dolfi, “Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar,” J. Atmos. Ocean. Technol. 20, 1183 (2003).

    Article  ADS  Google Scholar 

  38. R. Frehlich, “Estimation of Velocity Error for Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 18, 1628 (2001).

    Article  ADS  Google Scholar 

  39. F. Holzapfel, T. Gerz, and R. Baumann, “The Turbulent Decay of Trailing Vortex Pairs in Stably Stratified Environments,” Aerospace Sci. Technol. 5, 95 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Smalikho, Sh. Rahm, 2010, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smalikho, I.N., Rahm, S. Lidar investigations of the effects of wind and atmospheric turbulence on an aircraft wake vortex. Atmos Ocean Opt 23, 137–146 (2010). https://doi.org/10.1134/S1024856010020107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010020107

Keywords

  • Vortex
  • Lidar
  • Vortex Core
  • Atmospheric Turbulence
  • Energy Dissipation Rate