Abstract
The effects of wind and atmospheric turbulence on an aircraft wake vortex are studied experimentally. A 2-μm coherent Doppler lidar is used for measuring the parameters of the aircraft vortices, wind, and turbulence. The results are presented of lidar measurements of aircraft vortex parameters at different wind velocities and turbulence levels. An empirical dependence of the aircraft vortex lifespan on the dissipation rate of atmospheric turbulence energy has been obtained from the experimental data for the first time.
This is a preview of subscription content, access via your institution.
References
T. Gerz, F. Holzapfel, and D. Darracq, “Commercial Aircraft Wake Vortices,” Progr. Aerospace Sci. 38, 181 (2002d).
S. C. Crow, “Stability Theory for a Pair of Trailing Vortices,” AIAA J. 8, 2172 (1970).
M. R. Brashears and J. N. Hallock, “Aircraft Wake Vortex Transport Model,” J. Aircraft. 11, 256 (1974).
S. C. Crow and E. R. Bate, Jr., “Lifespan of Trailing Vortices in a Turbulent Atmosphere,” J. Aircraft. 13, 476 (1976).
A. M. Hecht, A. J. Bilanin, J. E. Hirsh, and R. S. Snedeker, “Turbulent Vortices in Stratified Fluids,” AIAA J. 18, 738 (1980).
G. C. Greene, “An Approximate Model of Vortex Decay in the Atmosphere,” J. Aircraft. 23, 566 (1986).
T. Sarpkaya and J. J. Daly, “Effect of Ambient Turbulence on Trailing Vortices,” J. Aircraft. 24, 399 (1987).
R. E. Robins and D. P. Delisi, “Numerical Study of Vertical Shear and Stratification Effect on the Evolution of a Vortex Pair,” AIAa J. 28, 661 (1990).
V. Schilling, S. Siano, and D. Elting, “Dispersion of Aircraft Emissions Due to Wake Vortices in Stratified Shear Flows: A Two-dimensional Numerical Study,” Geophys. Res. D 101, 965 (1996).
T. Hofbauer and T. Gerz, “Effect of Nonlinear Shear on the Dynamics of a Counter-Rotating Vortex Pair,” in Proc. of the 1st Intern. Symp. for Turbulence and Shear Flow Phenomena, Santa Barbara, USA, 12–15 Sept. 1999.
F. Holzapfel, “Probabilistic Two-phase Wake Vortex Decay and Transport Model,” J. Aircraft. 40, 323 (2003).
F. Holzapfel, T. Hofbauer, D. Darracq, H. Moet, F. Garnier, and C. Ferreira Gago, “Analysis of Wake Vortex Decay Mechanisms in the Atmosphere,” Aerospace Sci. Technol. 7, 263 (2003).
F. Holzapfel and R. E. Robins, “Probabilistic Twophase Aircraft Wake-vortex Model: Application and Assessment,” J. Aircraft. 41, 1 (2004).
F. Kopp, R. L. Schwiesow, and Ch. Werner, “Remote Measurements of Boundary Layer Wind Profiles Using a Cw Doppler Lidar,” J. Climate Appl. Meteorol. 23, 148 (1984).
F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, “Wind Measurement Accuracy of the NOAA Pulsed Infrared Doppler Lidar,” Appl. Opt. 23, 2503 (1984).
J. G. Hawley, R. Tang, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent Launch-site Atmospheric Wind Sounder: Theory and Experiment,” Appl. Opt. 32, 4557 (1993).
R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-μm Coherent Doppler Lidar for Wind Measurements,” J. Atmos. Ocean. Technol. 11, 1517 (1994).
Ch. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, Ph. Drobinski, B. Romand, Ch. Boitel, D. Oh, M. Lopez, M. Meissonner, D. Bruneau, and A. Dabas, “Wind Infrared Doppler Lidar Instrument,” Opt. Eng. 40, 115 (2001).
I. N. Smalikho, “Techniques of Wind Vector Estimation from Data Measured with a Scanning Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 20, 276 (2003).
T. Gal-Chen, M. Xu, and W. L. Eberhard, “Estimations of Atmospheric Boundary Layer Fluxes and Other Turbulence Parameters from Doppler Lidar Data,” Geophys. Res. D 97(17), 409 (1992).
V. A. Banakh, I. N. Smalikho, F. Kopp, and Ch. Werner, “Measurements of Turbulent Energy Dissipation Rate with a Cw Doppler Lidar in the Atmospheric Boundary Layer,” J. Atmos. Ocean. Technol. 16, 1044 (1999).
R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler Lidar Measurements of Wind Field Statistics,” Boundary-Layer Meteorol. 86, 223 (1998).
R. Frehlich and L. Cornman, “Estimating Spatial Velocity Statistics with Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 19, 355 (2002).
I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of Atmospheric Turbulence by 2-μm Doppler Lidar,” J. Atmos. Ocean. Technol. 22, 1733 (2005).
S. M. Hannon and J. A. Thomson, “Aircraft Wake Vortex Detection and Measurement with Pulsed Solidstate Coherent Laser Radar,” J. Mod. Opt. 41, 2175 (1994).
G. Constant, R. Foord, P. A. Forrester, and J. M. Vaughan, “Coherent Laser Radar and the Problem of Aircraft Wake Vortices,” J. Mod. Opt. 41, 2153 (1994).
P. B. Brockman, C. Barker, G. J. Koch, D. P. C. Nguyen, and C. L. Britt, “Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area,” in Proc. of the 10th Coherent Laser Radar Technology and Applications Conf. (Mount Hood, OR, 1999), pp. 12–15.
F. Kopp, “Wake-vortex Characteristics of Military-type Aircraft Measured At Airport Oberpfaffenhofen Using the DLR Laser Doppler Anemometer,” Aerospace Sci. Technol. 3(4), 191 (1999).
M. Harris, R. I. Young, F. Kopp, A. Dolfi, and J.-P. Cariou, “Wake Vortex Detection and Monitoring,” Aerospace Sci. Technol. 6, 325 (2002).
F. Kopp, I. N. Smalikho, S. Rahm, A. Dolfi, J.-P. Cariou, M. Harris, R. I. Young, K. Weekes, and N. Gordon, “Characterization of Aircraft Wake Vortices by Multiple-lidar Triangulation,” AIAA J. 41, 1081 (2003).
F. Kopp, S. Rahm, and I. N. Smalikho, “Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar,” J. Atmos. Ocean. Technol. 21, 194 (2004).
F. Kopp, S. Rahm, I. N. Smalikho, A. Dolfi, J.-P. Cariou, M. Harris, and R. I. Young, “Comparison of Wakevortex Parameters Measured by Pulsed and Continuous-wave Lidars,” J. Aircraft. 42, 916 (2005).
S. Rahm, I. N. Smalikho, and F. Kopp, “Characterization of Aircraft Wake Vortices by Airborne Coherent Doppler Lidar,” J. Aircraft. 44, 799 (2007).
S. Rahm and I. N. Smalikho, “Aircraft Wake Vortex Measurement with Airborne Coherent Doppler Lidar,” J. Aircraft. 45, 1148 (2008).
S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2 μm Using Solid-state Lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
I. N. Smalikho and Sh. Ram, “Aircraft Wake Vortices Parameter Measurement with Coherent Doppler Lidar,” Opt. Atmosf. Okeana 21, 977 (2008).
F. Holzapfel, T. Gerz, F. Kopp, E. Stumpf, M. Harris, R. I. Young, and A. Dolfi, “Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar,” J. Atmos. Ocean. Technol. 20, 1183 (2003).
R. Frehlich, “Estimation of Velocity Error for Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 18, 1628 (2001).
F. Holzapfel, T. Gerz, and R. Baumann, “The Turbulent Decay of Trailing Vortex Pairs in Stably Stratified Environments,” Aerospace Sci. Technol. 5, 95 (2001).
Author information
Authors and Affiliations
Additional information
Original Russian Text © I.N. Smalikho, Sh. Rahm, 2010, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Smalikho, I.N., Rahm, S. Lidar investigations of the effects of wind and atmospheric turbulence on an aircraft wake vortex. Atmos Ocean Opt 23, 137–146 (2010). https://doi.org/10.1134/S1024856010020107
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856010020107
Keywords
- Vortex
- Lidar
- Vortex Core
- Atmospheric Turbulence
- Energy Dissipation Rate