Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 2, pp 111–117 | Cite as

Regression models for the estimation of carbon exchange in boreal forests

  • A. N. Rublev
  • G. Yu. Grigoriev
  • T. A. Udalova
  • T. B. Zhuravleva
Atmospheric Radiation, Optical Weather, and Climate

Abstract

Based on the measurements of the carbon dioxide fluxes at a few sites of the global FLUXNET network, we developed linear regression models for the estimation of the carbon budget of boreal forests. The model estimates satisfactorily agree with the measurement data obtained in the boreal forests of Canada (Manitoba, Thompson) and Russia (Krasnoyarsk krai, Zotino). The correlation coefficient between the calculations and measurements for a coniferous forests exceeds 0.9, with the annually mean model error in the budget estimate, as compared to the experimental results, not exceeding 50 gC/m2/yr. Using satellite and ground-based meteorological data, we calculated the monthly average carbon budget of the coniferous forests of Krasnoyarsk krai in 2001. Based on the satellite classification of the vegetation cover, we plotted monthly and annually average maps of the carbon budget that reflect the spatiotemporal distribution of the CO2 uptake and emission rates. It is shown that the coniferous forests of Krasnoyarsk krai are mostly a carbon sink, uptaking as much as 300 gC/m2 throughout the growing season.

Keywords

Photosynthetically Active Radiation Coniferous Forest Boreal Forest Carbon Budget Cloud Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    E. A. Vaganov, E. F. Vedrova, S. V. Verkhovets, S. P. Efremov, T. T. Efremova, V. B. Kruglov, A. A. Onuchin, A. I. Sukhinin, and O. B. Shibistova, “Forests and Swamps in Siberia in Global Carbon Cycle,” Sib. Ekol. Zh 12(4), 631 (2005).Google Scholar
  3. 3.
    M. L. Goulden, J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy, “Measurements of Carbon Storage by Long-term Eddy Correlation: Methods and a Critical Evaluation of Accuracy,” Glob. Change Biol. 2(3), 169 (1996).CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    J. Lloyd, O. Shibistova, D. Zolotukhin, O. Kolle, A. Arneth, Ch. Wirth, J. Styles, N. Tchebakova, and E.-D. Schulze, “Seasonal and Annual Variation in the Photosynthetic Productivity and Carbon Balance of a Central Siberian Pine Forest,” Tellus 54B, 590 (2002).ADSGoogle Scholar
  9. 9.
    S. Lafont, L. Kergoat, G. Dedieu, A. Chrvillard, U. Kastens, and O. Kolle, “Spatial and Temporal Variability of Land CO2 Fluxes Estimated with Remote Sensing and Analysis Data over Western Eurasia,” Tellus 54B, 820–833 (2002).ADSGoogle Scholar
  10. 10.
    TCOS Siberia, 2003: Proposal EVK2-2002-00555, http://www.bgc-jena.mpg.de/public/carboeur/webTCOS/
  11. 11.
    A. Belward and T. Loveland, “The DIS 1km Land Cover Data Set, 1996, GLOBAL CHANGE,” The IGBP Newslett. No. 27 (Sep. 1996), http://wwwsurf.larc.nasa.gov/surf/pages/explan.html.
  12. 12.
    M. L. Goulden, B. C. Daube, S. M. Fan, D. J. Sutton, A. Bazzaz, J. W. Munger, and S. C. Wofsy, “Physiological Responses of a Black Spruce Forest to Weather,” J. Geophys. Res. D 102, 28987 (1997).CrossRefADSGoogle Scholar
  13. 13.
    M. L. Goulden, S. C. Wofsy, J. W. Harden, S. E. Trumbore, P. M. Crill, S. T. Gower, T. Fries, B. C. Daube, S.M. Fan, D. J. Sutton, A. Bazzaz, and J. W. Munger, “Sensitivity of Boreal Forest Carbon Balance to Soil Thaw,” Science 279(5348), 214 (1998).CrossRefADSGoogle Scholar
  14. 14.
    S. C. Wofsy and A. Dunn, “BOREAS Follow-On FLX-01 NSA-OBS Derived Data — NEE, GEE, and Respiration, 2001,” Data set. (Oak Ridge Nat. Labor. Distributed Active Archive Center, Oak Ridge, Tennessee, USA), http://daac.ornl.gov
  15. 15.
  16. 16.
  17. 17.
    Leemans and Cramer Climatic Database (Inst. of Climate Impact Research, Potsdam, 1996), Personal communication.Google Scholar
  18. 18.
    T. B. Zhuravleva and K. M. Firsov, “Algorithms of Calculations of Spectral Fluxes of Solar Radiation in the Cloudy and Clear-sky Atmosphere,” Atmos. Ocean. Opt. 17, 903 (2004).Google Scholar
  19. 19.
    T. B. Zhuravleva, A. N. Rublev, T. A. Udalova, and T. Yu. Chesnokova, “On Calculation of Photosynthetically Active Radiation in Estimation of Carbon Balance Parameters of Surface Ecosystems,” Atmos. Ocean. Opt. 19(1), 64 (2006).Google Scholar
  20. 20.
    Modis / Terra Atmosphere Monthly Global Product, http://g0dup05u.ecs.nasa.gov/Giovanni//modis.MOD08-M3. shtml
  21. 21.
  22. 22.
    V. Stolbovoi and I. Savin, Maps of Soil Characteristics, V. Stolbovoi and I. McCallum, (2002), CD-ROM Land Resources of Russia, Laxenburg, Austria, International Institute for Applied Systems Analysis and the Russian Academy of Science, CD-ROM, Distributed by the National Snow and Ice Data Center / World Data Center for Glaciology, Boulder.Google Scholar
  23. 23.
    Global Precipitation Climatology Project (GPCP), http://cics.umd.edu/?yin/GPCP/main.html
  24. 24.
    Global Land Cover 2000 (GLC2000) Maps, http://www-gvm.jrc.it/glc2000/input-data.htm
  25. 25.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. N. Rublev
    • 1
  • G. Yu. Grigoriev
    • 1
  • T. A. Udalova
    • 1
  • T. B. Zhuravleva
    • 2
  1. 1.Institute of Molecular PhysicsRussian Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations