Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 2, pp 106–110 | Cite as

The scale of ozone destruction in clouds

  • M. Yu. Arshinov
  • B. D. Belan
  • G. N. Tolmachev
  • A. V. Fofonov
Atmospheric Radiation, Optical Weather, and Climate

Abstract

Changes in the concentration of tropospheric ozone in clouds were investigated based on aircraft sensing data. Three ozonometers were used for the measurements—one chemiluminescent 3-02P and two UV 49C (Thermo Environment Inc., United States). The following types of clouds were studied: Cu, Cu med., St, Sc, As, and Ac. The thickness of the cloud layers was 1.5 km on average and varied from 0.4 to 4.5 km. The ozone destruction in clouds was 11–15 ppb on average and ranged from 3 to 34 ppb; it changed nearly twofold depending on the cloud type. The estimation of the annual runoff of ozone in clouds has shown that it is close to the annual ozone balance in the troposphere.

Keywords

Ozone Oceanic Optic Annual Runoff Tropospheric Ozone Cloud Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Perov and A. Kh. Khrgian, Modern Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  2. 2.
    S. V. Razumovskii and G. E. Zaikov, Ozone and its Reactions with Organic Compounds (Nauka, Moscow, 1974) [in Russian].Google Scholar
  3. 3.
    “Atmosphere Trace Gases that are Radiatively Active and Significance to Global Change,” Earth Quest. 40(2), 10–11 (1990).Google Scholar
  4. 4.
    B. D. Belan, “Tropospheric Ozone. 3. Ozone Abundance in Troposphere. Mechanisms and Factors,” Opt. Atmosf. Okeana 21(7), 600 (2008).Google Scholar
  5. 5.
    B. D. Belan and T. K. Sklyadneva, “Tropospheric Ozone. 4. Photochemical Formation of “Tropospheric Ozone: Role of Solar Radiation,” Opt. Atmosf. Okeana 21, 858 (2008).Google Scholar
  6. 6.
    B. D. Belan, “Tropospheric Ozone. 5. Gases-Precursors of Ozone,” Opt. Atmosf. Okeana 22, 230–268 (2009).Google Scholar
  7. 7.
    B. D. Belan, “Tropospheric Ozone. 6. Components of Main Cycles,” Opt. Atmosf. Okeana 22, 358–379 (2009).Google Scholar
  8. 8.
    J. Lelieveld and P. J. Crutzen, “The Role of Clouds in Tropospheric Photochemistry,” J. Atmos. Chem. 12, 229–267 (1991).CrossRefGoogle Scholar
  9. 9.
    J. E. Jonson and I. S. A. Isaksen, “Tropospheric Ozone Chemistry. The Impact of Cloud Chemistry,” J. Atmos. Chem. 16, 99–122 (1993).CrossRefGoogle Scholar
  10. 10.
    P. Brimblecombe, Air Composition and Chemistry (Cambridge Univ., 1986; Mir, Moscow, 1988).Google Scholar
  11. 11.
    J. Gonw and E. Lovejoy, “Reactive Uptake of Ozone by Liquid Organic Compounds,” Geophys. Res. Lett. 25, 931–934 (1998).CrossRefADSGoogle Scholar
  12. 12.
    R. Sander, “Modeling Atmospheric Chemistry: Interactions between Gas-Phase Species and Liquid Cloud / Aerosol Particles,” Surv. Geophys. 20, 1–31 (1999).CrossRefADSGoogle Scholar
  13. 13.
    Yu. M. Gershenzon, A. N. Ermakov, and A. P. Purmal’, “Chemical Reactions of Free Radicals with Atmospheric Aerozols,” Khim. Fiz. 19(3), 3 (2000).Google Scholar
  14. 14.
    G. Khaiklin, “Excretion of Gases from Atmosphere by Aerozol Particles,” in Heterogeneous Chemistry of Atmosphere (Gidrometeoizdat, Leningrad, 1986), p. 171–182 [in Russian].Google Scholar
  15. 15.
    Z. Wang and K. Sassen, “Ozone Distruction in Continental Stratus Clouds: An Aircraft Case Study,” J. Appl. Meteorol. 39, 875–886 (2000).CrossRefADSGoogle Scholar
  16. 16.
    D. Jacob, “Heterogeneous Chemistry and Tropospheric Ozone,” Atmos. Environ. 34, 2131–2159 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, and W. Michaelis, “Unexpectedly Low Ozone Concentration in Midlatitude Tropospheric Ice Clouds: A Case Study,” Geophys. Res. Lett. 23, 1929–1932 (1996).CrossRefADSGoogle Scholar
  18. 18.
    M. Yu. Arshinov, B. D. Belan, O. A. Krasnov, V. K. Kovalevskii, V. A. Pirogov, A. P. Plotnikov, G. N. Tolmachev, and A. V. Fofonov, “Comparison of Ultraviolet and Chemiluminescent Ozone Analyzers,” Opt. Atm. Okeana 15, 723–726 (2002).Google Scholar
  19. 19.
    D. Grosjean and J. Harrison, “Response of Chemiluminescent NOx Analyzers and Ultraviolet Ozone Analyzers to Organic Air Pollutants, Environ. Sci. and Technol. 19(9), 862–872 (1985).CrossRefGoogle Scholar
  20. 20.
    E. E. Hudgens, T. E. Kleindienst, F. F. McElroy, and W. M. Ollison, “A Study of Interferences in Ozone UV and Chemiluminescence Monitors Measurement of Toxic and Related Air Pollutants,” J. Air Waste Manage. Assoc. 44, 405 (1994).Google Scholar
  21. 21.
    T. E. Kleindienst, E. E. Hudgens, and D. F. Smith, “Comparison of Chemiluminescence and Ultraviolet Ozone Monitor Responses in the Presence of Humidity and Photochemical Pollutants,” J. Air Waste Manage. Assoc. 43, 213 (1993).Google Scholar
  22. 22.
    J. J. Huntzicker and R. L. Johnson, “Investigation of An Ambient Interference in the Measurement of Ozone by Ultraviolet Absorption Photometry,” Environ. Sci. Technol. 13, 1414 (1979).CrossRefADSGoogle Scholar
  23. 23.
    E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, B. K. Lamb, E. J. Allwine, M. Grutter, C. R. Ramos Villegas, C. Marquez, S. Blanco, B. Cardenas, C. E. Kolb, L. T. Molina, and M. J. Molina, “Technical Note: Evaluation of Standard Ultraviolet Absorption Ozone Monitors in a Polluted Urban Environment,” Atmos. Chem. Phys. 6, 3163 (2006).CrossRefGoogle Scholar
  24. 24.
    Manual on Atmosphere (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  25. 25.
    P. G. Pruchniewich and P. Fabian, “Meridional Distributions of Ozone in Troposphere and its Seasonal Variations,” J. Geophys. Res. D 82, 2063 (1977).CrossRefGoogle Scholar
  26. 26.
    F. Routhier, “Free Tropospheric and Boundary Layer Airborne Measurements of Ozone over the Latitude Range of 58° S to 70° N,” J. Geophys. Res. C 85, 2848–2960 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Yu. Arshinov
    • 1
  • B. D. Belan
    • 1
    • 2
  • G. N. Tolmachev
    • 1
  • A. V. Fofonov
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations