Abstract
Regular lidar measurements of the vertical aerosol distribution were conducted in Tomsk (56° N, 85° E) from March 2006 to October 2007 as part of the CISLINET (CIS Lidar Network) project. The statistical analysis of the profiles of the aerosol backscattering coefficients β a (532 nm), extinction coefficients σ a (532 nm), and lidar ratio S a (532 nm) from the data of nocturnal measurements by Raman lidar (532 and 607 nm) in the altitude range from 0.45 to 7 km is presented. According to these measurements, the mean height of the top boundary of the boundary layer (BL) is 1.22 km for the cold period of observations (from October to March) and 2.3 km for the warm period (from April to September). The mean value of σ a (532 nm) for the cold period of observations in the BL is 0.025 km−1, which is more than two times lower than the mean value of 0.061 km−1 for the warm observation period. The mean value of S a (532 nm) in the BL is independent of the observation season and is equal to 52 sr. Above the BL, in the free troposphere (FT), the coefficients β a (532 nm) and β a (532 nm) are proportional to the molecular scattering coefficient. The mean value of σ a (532 nm) is 0.0083 km−1 for the cold period and 0.011 km−1 for the warm period. The lidar ratio in the FT is 43.5 sr in the cold period. This value is nearly 10 sr lower than the mean lidar ratio for the warm period (52.8 sr).
Similar content being viewed by others
References
Aerosol and Climate, Ed. By K. Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1991) [in Russian].
L. Elterman, “Aerosol Measurements in the Troposphere and Stratosphere,” Appl. Opt. 5, 1769 (1966).
J. Bosenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, Ed. By A. Dabas, C. Loth, and J. Pelon (L’Ecole Polytechn., 2001), Pp. 155–158.
V. Matthias, D. Balis, J. Bosenberg, R. Eixmann, M. Iarlori, L. Komguem, I. Mattis, A. Papayannis, G. Pappalardo, M. R. Perrone, and X. Wang, “Vertical Aerosol Distribution Over Europe: Statistical Analysis of Raman Lidar Data From 10 European Aerosol Research Lidar Network (EARLINET) Stations,” J. Geophys. Res. 109, D18201 (2004), doi: 10.1029 / 2004JD004638.
V. Matthias and J. Bosenberg, “Aerosol Climatology for Planetary Boundary Layer Derived From Regular Lidar Measurements,” Atmos. Res. 63, 221 (2002).
I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Multilayer Aerosol Observations With Dual-wavelength Raman Lidar in the Framework of EARLINET,” J. Geophys. Res. 109, D13203 (2004).
V. Amiridis, D. S. Balis, S. Kazadzis, A. Bais, and E. Giannakaki, “Four-year Aerosol Observations With a Raman Lidar in Thessaloniki, Greece, in the Framework of European Aerosol Research Lidar Network (EARLINET),” J. Geophys. Res. 110, D21203 (2005), doi: 10.1029 / 2005JD006190.
F. De Tomasi, A. M. Tafiro, and M. R. Perrone, “Height and Seasonal Dependence of Aerosol Optical Properties over Southeast Italy,” J. Geophys. Res. 111, D10203 (2006), doi: 10.1029 / 2005JD006779.
M. V. Panchenko, S. A. Terpugova, A. G. Tumakov, B. D. Belan, and T. M. Rasskazchikova, “Some Aspects of a Technique for Sirborne Nephelomatric Studies of Tropospheric Aerosol on a Regional Scale,” Opt. Atmosf. Okeana 7, 1022–1032 (1994).
M. V. Panchenko and S. A. Terpugova, “Annuar Behavior of Submicron Aerosol Content in Troposphere over West Siberia,” Opt. Atmosf. Okeana 7, 1033–1044 (1994).
B. D. Belan, “Dynamics of Turbulence Layer According to Aerosol Data,” Opt. Atmosf. Okeana 7, 1045 (1994).
M. V. Panchenko, S. A. Terpugova, and A. G. Tumakov, “Annual Variations of Submicron Aerosol Fraction as Assessed from the Data of Airborne Nephelometric Measurements,” Atmos. Res. 41, 203 (1996).
M. V. Panchenko and S. A. Terpugova, “Application of Three-Layered Representation for Description of Vertical Profile of Submicrone Aerosol Content in Lower Troposphere,” Opt. Atmosf. Okeana 12, 1093 (1999).
M. Yu. Arshinov, B. D. Belan, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Monitoring Organization of Greenhouse e Atmosphere Oxiding Components Over Western Siberia Territory and Some Results. 2. Aerosol Composition,” Opt. Atmosf. Okeana 19, 1062 (2006).
A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CISLINET — Lidar Network for Monitoring Aerosol and Ozone in CIS Regions,” Reviewed and Revised Papers in Proc. of the 23d ILRC, Ed. By C. Nagasava and N. Sugimoto (Nara, Japan, 2006), pp. 671–672.
S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the Vertical Distribution of Troposphere Aerosol Layers · Based on the Data of Multifrequency Raman Lidar Sensing. 1. Methods of Optical Parameter Retrieval,” Opt. Atmosf. Okeana 22, 344 (2009).
D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO Mission: Spaseborne Lidar for Observations of Aerosols and Clouds,” Proc. SPIE 4893, 1 (2003).
D. M. Kabanov, Private Commun. (2009).
C. Bockmann, U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. Videnov Grigorov, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocaden-bosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms,” Appl. Opt. 43, 977 (2004).
W. P. Hooper and E. Eloranta, “Lidat Measurements of Wind in Planetary Boundary Layer: the Method, Accuracy and Results From Joint Measurements With Radiosonde and Kytoon,” J. Climate Appl. Meteorol. 25, 990 (1986).
L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban Boundary-Layer Height Determination From Lidar Measurements Over the Paris Area,” Appl. Opt. 38, 1769 (1999).
S. A. Young, “An Investigation Into the Performance of Algorithms Used to Retrieve Cloud Parameters From LITE Lidar Data, and Implications for Their Use With PICASSO-CENa Lidar Data,” CSIRO Atmospheric Res. Tech. Paper (2001), Vol. 53, http://www.cmar.csiro.au/E-print/Open/Young-2001a.pdf.
S. A. Young, “The Hybrid Extinction Retrieval Algorithms (HERA) for the Analysis of Lidar Data From Space,” CSIRO Atmospheric Res. Tech. Paper (2002), Vol. 54, http://www.cmar.csiro.au/E-print/Open/Young-2002a.pdf.
D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar Photometer for Scientific Monitoring (Equipment, Methods, Algorithms),” Opt. Atmosf. Okeana 14, 1162 (2001).
S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, “Features of Multiyear Variations of Aerosol Optical Depth of Atmosphere and Estimation of Different Factor Influence,” Opt. Atmosf. Okeana 21, 625 (2008).
D. Muller, U. Wandinger, and A. Ansmann, “Microphysical Particle Parameters from Extinction and Backscatter Lidar Data by Inversion With Regularization: Theory,” Appl. Opt. 38, 2346 (1999).
C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, “Microphysical Aerosol Parameters From Multiwavelength Lidar,” J. Opt. Soc. Am. A 22, 518 (2005).
D. Muller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent Lidar Ratios Observed With Raman Lidar,” J. Geophys. Res. 112, D16202 (2007), Doi: 10.1029 / 2006JD008292.
T. Murayama, S. J. Masonis, J. Redemann, T. L. Anderson, B. Schmid, J. M. Livingston, P. B. Russell, B. Huebert, S. G. Howell, C. S. McNaughton, A. Clarke, M. Abo, A. Shimizu, N. Sugimoto, M. Yabuki, H. Kuze, S. Fukagawa, K. Maxwell-Meier, R. J. Weber, D. A. Orsini, B. Blomquist, A. Bandy, and D. Thornton, “An Intercomparison of Lidar-Derived Aerosol Optical Properties With Airborne Measurements Near Tolyo During ACE-Asia,” J. Geophys. Res. D 108, 8651 (2003), Doi: 10.1029 / 2002JD003259.
M. Mezheris, Laser Remote Sensing (Mir, Moscow, 1987) [in Russian].
A. P. Ivanov, S. S. Khmelevtsov, A. P. Chaikovskii, and V. N. Shcherbakov, “Statistical Analysis of Laser Probing Data of Stratospheric Aerosol,” Izv. RAN, Fiz. Atmosf. Okeana 29, 82 (1993).
V. V. Zuev, A. V. El’nikov, and V. D. Burlakov, Laser Sensing of Middle Atmosphere (RASKO, Tomsk, 2002) [in Russian].
Yu. S. Balin, I. E. Penner, and S. V. Samoilova, “Space-borne and Under-satellite Laser Sensing of Aerosol and Cloud Fields of Troposphere,” Opt. Atmosf. Okeana 20, 837 (2007).
J. Ackerman, “The Extinction-to-backscatter Ratio of Tropospheric Aerosol: A Numerical Study,” J. Atmos. Ocean. Techn. 15, 1043 (1998).
Author information
Authors and Affiliations
Additional information
Original Russian Text © S.V. Samoilova, Yu.S. Balin, G.P. Kokhanenko, I.E. Penner, 2010, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Samoilova, S.V., Balin, Y.S., Kokhanenko, G.P. et al. Investigation of the vertical distribution of tropospheric aerosol layers from multifrequency laser sensing data. Part 2: The vertical distribution of optical aerosol characteristics in the visible region. Atmos Ocean Opt 23, 95–105 (2010). https://doi.org/10.1134/S102485601002003X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S102485601002003X