Skip to main content
Log in

Investigation of the vertical distribution of tropospheric aerosol layers from multifrequency laser sensing data. Part 2: The vertical distribution of optical aerosol characteristics in the visible region

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Regular lidar measurements of the vertical aerosol distribution were conducted in Tomsk (56° N, 85° E) from March 2006 to October 2007 as part of the CISLINET (CIS Lidar Network) project. The statistical analysis of the profiles of the aerosol backscattering coefficients β a (532 nm), extinction coefficients σ a (532 nm), and lidar ratio S a (532 nm) from the data of nocturnal measurements by Raman lidar (532 and 607 nm) in the altitude range from 0.45 to 7 km is presented. According to these measurements, the mean height of the top boundary of the boundary layer (BL) is 1.22 km for the cold period of observations (from October to March) and 2.3 km for the warm period (from April to September). The mean value of σ a (532 nm) for the cold period of observations in the BL is 0.025 km−1, which is more than two times lower than the mean value of 0.061 km−1 for the warm observation period. The mean value of S a (532 nm) in the BL is independent of the observation season and is equal to 52 sr. Above the BL, in the free troposphere (FT), the coefficients β a (532 nm) and β a (532 nm) are proportional to the molecular scattering coefficient. The mean value of σ a (532 nm) is 0.0083 km−1 for the cold period and 0.011 km−1 for the warm period. The lidar ratio in the FT is 43.5 sr in the cold period. This value is nearly 10 sr lower than the mean lidar ratio for the warm period (52.8 sr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerosol and Climate, Ed. By K. Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  2. L. Elterman, “Aerosol Measurements in the Troposphere and Stratosphere,” Appl. Opt. 5, 1769 (1966).

    Article  ADS  Google Scholar 

  3. J. Bosenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, Ed. By A. Dabas, C. Loth, and J. Pelon (L’Ecole Polytechn., 2001), Pp. 155–158.

  4. V. Matthias, D. Balis, J. Bosenberg, R. Eixmann, M. Iarlori, L. Komguem, I. Mattis, A. Papayannis, G. Pappalardo, M. R. Perrone, and X. Wang, “Vertical Aerosol Distribution Over Europe: Statistical Analysis of Raman Lidar Data From 10 European Aerosol Research Lidar Network (EARLINET) Stations,” J. Geophys. Res. 109, D18201 (2004), doi: 10.1029 / 2004JD004638.

    Article  ADS  Google Scholar 

  5. V. Matthias and J. Bosenberg, “Aerosol Climatology for Planetary Boundary Layer Derived From Regular Lidar Measurements,” Atmos. Res. 63, 221 (2002).

    Article  Google Scholar 

  6. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, “Multilayer Aerosol Observations With Dual-wavelength Raman Lidar in the Framework of EARLINET,” J. Geophys. Res. 109, D13203 (2004).

    Article  ADS  Google Scholar 

  7. V. Amiridis, D. S. Balis, S. Kazadzis, A. Bais, and E. Giannakaki, “Four-year Aerosol Observations With a Raman Lidar in Thessaloniki, Greece, in the Framework of European Aerosol Research Lidar Network (EARLINET),” J. Geophys. Res. 110, D21203 (2005), doi: 10.1029 / 2005JD006190.

    Article  ADS  Google Scholar 

  8. F. De Tomasi, A. M. Tafiro, and M. R. Perrone, “Height and Seasonal Dependence of Aerosol Optical Properties over Southeast Italy,” J. Geophys. Res. 111, D10203 (2006), doi: 10.1029 / 2005JD006779.

    Article  Google Scholar 

  9. M. V. Panchenko, S. A. Terpugova, A. G. Tumakov, B. D. Belan, and T. M. Rasskazchikova, “Some Aspects of a Technique for Sirborne Nephelomatric Studies of Tropospheric Aerosol on a Regional Scale,” Opt. Atmosf. Okeana 7, 1022–1032 (1994).

    Google Scholar 

  10. M. V. Panchenko and S. A. Terpugova, “Annuar Behavior of Submicron Aerosol Content in Troposphere over West Siberia,” Opt. Atmosf. Okeana 7, 1033–1044 (1994).

    Google Scholar 

  11. B. D. Belan, “Dynamics of Turbulence Layer According to Aerosol Data,” Opt. Atmosf. Okeana 7, 1045 (1994).

    Google Scholar 

  12. M. V. Panchenko, S. A. Terpugova, and A. G. Tumakov, “Annual Variations of Submicron Aerosol Fraction as Assessed from the Data of Airborne Nephelometric Measurements,” Atmos. Res. 41, 203 (1996).

    Article  Google Scholar 

  13. M. V. Panchenko and S. A. Terpugova, “Application of Three-Layered Representation for Description of Vertical Profile of Submicrone Aerosol Content in Lower Troposphere,” Opt. Atmosf. Okeana 12, 1093 (1999).

    Google Scholar 

  14. M. Yu. Arshinov, B. D. Belan, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Monitoring Organization of Greenhouse e Atmosphere Oxiding Components Over Western Siberia Territory and Some Results. 2. Aerosol Composition,” Opt. Atmosf. Okeana 19, 1062 (2006).

    Google Scholar 

  15. A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CISLINET — Lidar Network for Monitoring Aerosol and Ozone in CIS Regions,” Reviewed and Revised Papers in Proc. of the 23d ILRC, Ed. By C. Nagasava and N. Sugimoto (Nara, Japan, 2006), pp. 671–672.

  16. S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the Vertical Distribution of Troposphere Aerosol Layers · Based on the Data of Multifrequency Raman Lidar Sensing. 1. Methods of Optical Parameter Retrieval,” Opt. Atmosf. Okeana 22, 344 (2009).

    Google Scholar 

  17. D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO Mission: Spaseborne Lidar for Observations of Aerosols and Clouds,” Proc. SPIE 4893, 1 (2003).

    Article  Google Scholar 

  18. http://eosweb.larc.nasa.gov

  19. D. M. Kabanov, Private Commun. (2009).

  20. http://www.ready.noaa.gov

  21. http://www.weather.uwyo.edu

  22. C. Bockmann, U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. Videnov Grigorov, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocaden-bosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms,” Appl. Opt. 43, 977 (2004).

    Article  ADS  Google Scholar 

  23. W. P. Hooper and E. Eloranta, “Lidat Measurements of Wind in Planetary Boundary Layer: the Method, Accuracy and Results From Joint Measurements With Radiosonde and Kytoon,” J. Climate Appl. Meteorol. 25, 990 (1986).

    Article  ADS  Google Scholar 

  24. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban Boundary-Layer Height Determination From Lidar Measurements Over the Paris Area,” Appl. Opt. 38, 1769 (1999).

    Article  Google Scholar 

  25. S. A. Young, “An Investigation Into the Performance of Algorithms Used to Retrieve Cloud Parameters From LITE Lidar Data, and Implications for Their Use With PICASSO-CENa Lidar Data,” CSIRO Atmospheric Res. Tech. Paper (2001), Vol. 53, http://www.cmar.csiro.au/E-print/Open/Young-2001a.pdf.

  26. S. A. Young, “The Hybrid Extinction Retrieval Algorithms (HERA) for the Analysis of Lidar Data From Space,” CSIRO Atmospheric Res. Tech. Paper (2002), Vol. 54, http://www.cmar.csiro.au/E-print/Open/Young-2002a.pdf.

  27. http://www-calipso.larc.nasa.gov

  28. D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Solar Photometer for Scientific Monitoring (Equipment, Methods, Algorithms),” Opt. Atmosf. Okeana 14, 1162 (2001).

    Google Scholar 

  29. S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, “Features of Multiyear Variations of Aerosol Optical Depth of Atmosphere and Estimation of Different Factor Influence,” Opt. Atmosf. Okeana 21, 625 (2008).

    Google Scholar 

  30. D. Muller, U. Wandinger, and A. Ansmann, “Microphysical Particle Parameters from Extinction and Backscatter Lidar Data by Inversion With Regularization: Theory,” Appl. Opt. 38, 2346 (1999).

    Article  ADS  Google Scholar 

  31. C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, “Microphysical Aerosol Parameters From Multiwavelength Lidar,” J. Opt. Soc. Am. A 22, 518 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Muller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent Lidar Ratios Observed With Raman Lidar,” J. Geophys. Res. 112, D16202 (2007), Doi: 10.1029 / 2006JD008292.

    Article  ADS  Google Scholar 

  33. T. Murayama, S. J. Masonis, J. Redemann, T. L. Anderson, B. Schmid, J. M. Livingston, P. B. Russell, B. Huebert, S. G. Howell, C. S. McNaughton, A. Clarke, M. Abo, A. Shimizu, N. Sugimoto, M. Yabuki, H. Kuze, S. Fukagawa, K. Maxwell-Meier, R. J. Weber, D. A. Orsini, B. Blomquist, A. Bandy, and D. Thornton, “An Intercomparison of Lidar-Derived Aerosol Optical Properties With Airborne Measurements Near Tolyo During ACE-Asia,” J. Geophys. Res. D 108, 8651 (2003), Doi: 10.1029 / 2002JD003259.

    Article  ADS  Google Scholar 

  34. M. Mezheris, Laser Remote Sensing (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  35. A. P. Ivanov, S. S. Khmelevtsov, A. P. Chaikovskii, and V. N. Shcherbakov, “Statistical Analysis of Laser Probing Data of Stratospheric Aerosol,” Izv. RAN, Fiz. Atmosf. Okeana 29, 82 (1993).

    ADS  Google Scholar 

  36. V. V. Zuev, A. V. El’nikov, and V. D. Burlakov, Laser Sensing of Middle Atmosphere (RASKO, Tomsk, 2002) [in Russian].

    Google Scholar 

  37. Yu. S. Balin, I. E. Penner, and S. V. Samoilova, “Space-borne and Under-satellite Laser Sensing of Aerosol and Cloud Fields of Troposphere,” Opt. Atmosf. Okeana 20, 837 (2007).

    Google Scholar 

  38. J. Ackerman, “The Extinction-to-backscatter Ratio of Tropospheric Aerosol: A Numerical Study,” J. Atmos. Ocean. Techn. 15, 1043 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Samoilova, Yu.S. Balin, G.P. Kokhanenko, I.E. Penner, 2010, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilova, S.V., Balin, Y.S., Kokhanenko, G.P. et al. Investigation of the vertical distribution of tropospheric aerosol layers from multifrequency laser sensing data. Part 2: The vertical distribution of optical aerosol characteristics in the visible region. Atmos Ocean Opt 23, 95–105 (2010). https://doi.org/10.1134/S102485601002003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601002003X

Keywords

Navigation