Skip to main content
Log in

Optical transfer properties of external channels and image isoplanarity in vision systems

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript


Some aspects of the application of the linear systems approach and the method of the Green’s functions to the theory of vision in scattering media are refined. The physical meaning of the influence function and the optical transfer function of scattering media and vision systems are discussed. It is stated that the physical meaning of the concepts of the optical transfer function and the impulse response (point spread function or influence function) of scattering media or an imaging channel in scattering media is uncertain if the reflection (emission) properties of the object plane (surface) are undetermined. The main differences between the characteristics of linear systems for optical imaging and vision systems are emphasized. A criterion is suggested for estimating the size of the peripheral image isoplanarity zones in vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. D. M. Bravo-Zhivotovskii, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some Problems of the Theory of Imaging in Turbid Media,” Izv. AN SSSR, Fiz. Atmosf. Okeana 5, 672 (1969).

    Google Scholar 

  2. I. M. Levin, “On Observation of Objects Illuminated by a Narrow Light Beam in Scattering Medium,” Izv. AN SSSR, Fiz. Atmosf. Okeana 5, 62 (1969).

    Google Scholar 

  3. D. Tanre, M. Herman, and P. Y. Deschamps, “Influence of the Background Contribution upon Space Measurements of Ground Reflectance,” Appl. Opt. 20, 3676 (1981).

    Article  ADS  Google Scholar 

  4. D. Tanre, M. Herman, P. Y. Deschamps, and A. de Leffe, “Atmospheric Modeling for Space Measurements of Ground Reflectances, Including Bidirectional Properties,” Appl. Opt. 18, 3587 (1979).

    Article  ADS  Google Scholar 

  5. N. S. Kopeika, S. Solomon, and Y. Gencay, “Wavelength Variation of Visible and Near-Infrared Resolution through the Atmosphere: Dependence on Aerosol and Meteorological Conditions,” J. Opt. Sci. Atmos. 71, 892 (1981).

    Article  ADS  Google Scholar 

  6. N. S. Kopeika, “Effects of Aerosols on Imaging through the Atmosphere: A Review of Spatial Frequency and Wavelength Dependent Effects,” Opt. Eng. 24, 707–712 (1985).

    Google Scholar 

  7. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Nauka Tekhnika, Minsk, 1995) [in Russian].

    Google Scholar 

  8. I. L. Katsev, “Estimation of Vision Characteristics in Warm Clouds from Data on their Microstructure,” Izv. AN BSSR, Ser. Fiz. Mat., No. 2, 93 (1984).

  9. A. Ishimaru, “Limitation on Image Resolution Imposed by a Random Medium,” Appl. Opt. 17, 348 (1978).

    Article  ADS  Google Scholar 

  10. R. S. Frazer and Y. Kaufman, “The Relative Importance of Aerosol Scattering Absorption in Remote Sensing,” IEEE. Trans. Geosci. Remote Sens. 23, 625 (1985).

    Article  ADS  Google Scholar 

  11. V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Linear Systems Theory in Optics of Disperse Media (Spektr Inst. Opt. Atmosf. SO RAN, Tomsk, 1997) [in Russian].

    Google Scholar 

  12. V. V. Belov, “Statistical Modeling of Imaging Process in Active Night Vision Systems with Gate-Light Detection,” Appl. Phys. 75, 571 (2002).

    Article  Google Scholar 

  13. T. A. Sushkevich, S. A. Strelkov, and A. A. Ioltukhovskii, Method of. Characteristics in Problems of Atmospheric Optics (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  14. R. S. Fraser, R. A. Ferrare, Y. J. Kaufman, and S. Mattoo, “Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery,” Int. J. Remote Sens. 13, 541 (1992).

    Article  ADS  Google Scholar 

  15. V. V. Belov and S. V. Afonin, From Physical Bases, Theory and Modeling to Thematic Processing of Satellite Images (Inst. Opt. Atmosf. SO RAN, Tomsk, 2005) [in Russian].

    Google Scholar 

  16. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  17. V. V. Belov, “Statistical Modeling of Three-Dimensional Object Image in Problems of Vision Theory,” Izv. AN SSSR, Fiz. Atmosf. Okeana 18, 435 (1982).

    Google Scholar 

  18. V. V. Belov, “The Theory of Linear Vision Systems. Modeling the Linear-System Characteristics,” Opt. Atmosf. 2, 787 (1989).

    MathSciNet  Google Scholar 

  19. V. V. Belov, G. M. Krekov, and I. Yu. Makushkina, “Isoplanarity in Vision Systems,” Opt. Atmosf. 2, 1011 (1989).

    Google Scholar 

  20. L. S. Dolin and V. A. Savel’ev, “Equation of Optical Image Transfer in a Scattering Medium,” Izv. AN SSSR, Fiz. Atmosf. Okeana 15, 717 (1979).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © V.V. Belov, 2010, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, V.V. Optical transfer properties of external channels and image isoplanarity in vision systems. Atmos Ocean Opt 23, 81–87 (2010).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: