Skip to main content

Investigation of the efficiency of the application of laser guide stars


Possibilities of the correction of the general wavefront tilt using a signal from a laser guide star (LGS) are analyzed. The quality of an image of an extraterrestrial object formed by an astronomic optical system through a turbulent atmosphere is analyzed. The efficiency of the adaptive correction of distortions for different LGS schemes is analyzed. Calculations are performed for different models of the vertical dependence of the structural parameter of the refractive index of the turbulent atmosphere.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. P. Linnik, “About Principal Possibilities to Overcome the Impact of Atmosphere on Star Image,” Opt. Spek–trosk. 3, 401–402(1957).

    Google Scholar 

  2. 2.

    R. Fugate, “Laser Beacon Adaptive Optics,” Opt. Photon. News 4 (6), 14–19 (1993).

    Article  ADS  Google Scholar 

  3. 3.

    R. Ragazzoni, “Absolute Tip–tilt Determination With Laser Beacons,” Astron. Astrophys. 305, L13–L16 (1996).

    ADS  Google Scholar 

  4. 4.

    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1961) [in Russian].

    Google Scholar 

  5. 5.

    V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, M. L. Belov, and A. N. Kozhemyakov, Elements of Light Scattering Theory and Optical Location (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  6. 6.

    V. I. Tatarskii and A. Ishimaru, Digest of ‘scintillation’ Meeting for Wave Propagation in Random Media (Univ. of Washington, Seattle, USA, 1992).

    Google Scholar 

  7. 7.

    M. A. Kalistratova and A. I. Kon, “Fluctuations of Arrival Angle of Light Waves From Extended Source in Turbulent Atmosphere,” Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz. 9, 1100–1107 (1966).

    Google Scholar 

  8. 8.

    V. P. Lukin, “Tracking of Random Angular Shifts of Optical Beams,” in Proc. of the 5th All—Union Symp. on Propagation of Laser Emission in Atmosphere (Tomsk, 1979), Part 2, Pp. 33–36.

    Google Scholar 

  9. 9.

    V. I. Klyatskin, Statistical Description of Dynamic Systems With Fluctuating Parameters (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  10. 10.

    V. L. Mironov, V. V. Nosov, and B. N. Chen, “Correlation of the Shifts of Optical Images of Laser Sources in a Turbulent Atmosphere,” Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz. 25, 1467–1471 (1982).

    Google Scholar 

  11. 11.

    V. P. Lukin, “Efficiency of the Compensation of Phase Distortions of Optical Waves,” Kvant. Elektron. 7, 923–927 (1978) [Sov. J. Quant. Electron. 7, 522 (1977)].

    Google Scholar 

  12. 12.

    V. P. Lukin, “Correction of Random Angular Displacements of Optical Beams,” Kvant. Elektron. 10, 1270–1279 (1980) [Sov. J. Quant. Electron. 10, 727 (1980)].

    Google Scholar 

  13. 13.

    V. P. Lukin and M. I. Charnotskii, “Reciprocity Principle and Adaptive Control of Optical Radiation Parameters,” Kvant. Elektron. 12, 952–958 (1982) [Sov. J. Quant. Electron. 12, 602 (1982)].

    Google Scholar 

  14. 14.

    V. P. Lukin and O. N. Emaleev, “Correction of Angular Displacements of Optical Beams,” Kvant. Elektron. 12, 2465–2473 (1982) [Sov. J. Quant. Electron. 12, 1470 (1982)].

    Google Scholar 

  15. 15.

    V. P. Lukin and V. F. Matyukhin, “Adaptive Correction of Images,” Kvant. Elektron. 13, 2465–2473 (1983) [Sov. J. Quant. Electron. 13, 1604 (1983)].

    Google Scholar 

  16. 16.

    V. P. Lukin, Atmispharin Adaptiva Iptins (Nauka, Novosibirsk, 1986; SPIA Ipt. Ang. Prass, 1996), Eng. Vol. I23.

    Google Scholar 

  17. 17.

    V. P. Lukin, “Limiting Resolution of Adaptive Telescope With the Use of Artificial Star,” in Proc. of the ICO–16 on Active and Adaptive Optics (1993), pp. 521–524.

  18. 18.

    V. P. Lukin and B. V. Fortes, “Efficiency of Adaptive Correction of Images in a Telescope Using an Artificial Guide Star,” OSATechn. Digest. 23, 192–194 (1995).

    Google Scholar 

  19. 19.

    V. P. Lukin, “Laser Beacon and Full Aperture Tilt Measurements,” Adapt. Opt. Techn. Digest Ser. 13, 35-1–35-5 (1996).

    Google Scholar 

  20. 20.

    V. P. Lukin, “Adaptive Formation of Beams and Images in Turbulent Atmosphere,” Opt. Atmosf. Okeana 8, 301–341 (1995).

    Google Scholar 

  21. 21.

    V. P. Lukin and B. V. Fortes, “Comparison of Limit Efficiencies for Various Schemes of Laser Reference Star Formation,” Opt. Atmosf. Okeana 10 (1), 34–41 (1997)

    Google Scholar 

  22. 22.

    R. Ragazzoni, S. Esposito, and E. Marchetti, “Auxiliary Telescopes for the Absolute Tip–tilt Determination of a Laser Guide Star,” Mon. Not. R. Astron. Soc. 276, L76–L78 (1995).

    ADS  Google Scholar 

  23. 23.

    M. S. Belen’kii, “Full Aperture Tilt Measurement Technique With a Laser Guide Star,” Proc. SPIE 2471, 289–296 (1995).

    Article  ADS  Google Scholar 

  24. 24.

    V. P. Lukin, “Mono and Bistatic Schemes and Optimal Algorithm for Tilt Correction in Ground–Based Adaptive Telescopes,” Appl. Opt. 37, 4561–4568 (1998).

    Article  ADS  Google Scholar 

  25. 25.

    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S.S. Khmelevtsov, Laser Emission in Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  26. 26.

    D. F. Buscher, G. Love, and R. Myers, “Laser Beacon Wave–Front Sensing without Focal Anisoplanatism,” Opt. Lett. 27, 149–151 (2002).

    Article  ADS  Google Scholar 

  27. 27.

    D. Bonaccini and V. Lukin, “Laser Guide Star with Collimated Laser Beam for Large Aperture Telescope,” in Proc. of Frontiers in Optics, 2006 (Rochester, USA, 2006), p. 129.

  28. 28.

    L. Bolbasova, A. Goncharov, and V. Lukin, “Field–Oriented Wavefront Sensor for Laser Guide Stars, ” in Proc. of the 6th Int. Workshop for Industry and Medicine (Gal–way, Ireland, 2007), pp. 174–175.

    Google Scholar 

  29. 29.

    L. A. Bol’basova and V. P. Lukin, “Laser Guide Star and Models of Atmospheric Turbulence,” Opt. Atmosf. Okeana 20, 1096–1104(2007).

    Google Scholar 

  30. 30.

    R. R. Parenti and R. J. Sasiela, “Laser–guide–star Systems for Astronomical Applications,” J. Opt. Soc. Am. A11, 288–309(1994).

    Article  ADS  Google Scholar 

Download references

Author information



Additional information

Original Russian Text © L.A. Bol’basova, V.P. Lukin, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bol’basova, L.A., Lukin, V.P. Investigation of the efficiency of the application of laser guide stars. Atmos Ocean Opt 23, 65–72 (2010).

Download citation


  • Turbulent Atmosphere
  • Entrance Aperture
  • Random Displacement
  • Strehl Ratio
  • Wavefront Sensor