Abstract
The representativeness of measurements of the dissipation rate of atmospheric turbulence energy by 2–nicron pulsed coherent Doppler lidar scanning in the vertical plane is studied experimentally. A comparison of the results of simultaneous measurements of the dissipation rate at different altitudes in the atmospheric boundary layer by lidar and four sonic anemometers has shown that the lidar estimate has a small bias and its relative error does not exceed 25%.
This is a preview of subscription content, access via your institution.
References
I. N. Smalikho and S. Rahm “Lidar Investigation of the Effect of Wind and Atmospheric Turbulence on Aircraft Wake Vortices”, Opt. Atmosf. Okeana 22, 1160–1169 (2009) [Atmos. Ocean. Opt. 23, No. 2, 2010, in press].
F. Holzapfel and R. E. Robins, “Probabilistic Two–Phase Aircraft Wake–vortex Model: Application and Assessment,” J. Aircraft. 41 (1), 1–10 (2004).
I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of Atmospheric Turbulence by 2 µm Doppler Lidar,” J. Atmos. Ocean. Technol. 22, 1733–1747 (2005).
I. N. Smalikho and S. Rahm “Measurements of Aircraft Wake Vortex Parameters with a Coherent Doppler Lidar”, Atmos. Ocean. Opt. 21, 854–868 (2008).
R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of Boundary Layer Profiles in Urban Environment,” J. Appl. Meteorol. 45, 821–837 (2006).
I. N. Smalikho “Accuracy of the Turbulent Energy Dissipation Rate Estimation from the temporal Spectrum of Wind Velocity Fluctuations ”, Atmos. Ocean. Opt. 10,559–563 (1997).
R. M. Hardesty, “Performance of a Discrete Spectral Peak Frequency Estimator for Doppler Wind Velocity Measurements,” IEEE Trans. Geosci. Remote Sens. 24, 777–783 (1986).
B. J. Rye and R. M. Hardesty, “Discrete Spectral Peak Estimation in Incoherent Backscatter Heterodyne Lidar. I: Spectral Accumulation and the Cramer–Rao Lower Bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27(1993).
B. J. Rye and R. M. Hardesty, “Discrete Spectral Peak Estimation in Incoherent Backscatter Heterodyne Lidar. II: Correlogram Accumulation,“ IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
R. Frehlich and M. J. Yadlowsky, “Performance of Mean–requency Estimators for Doppler Radar and Lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994).
V. A. Banakh and I. N. Smalikho “Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data ”, Atmos. Ocean. Opt. 10, 957–965 (1997).
R. Frehlich, “Effect of Wind Turbulence on Coherent Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 14 (10), 54–75 (1997).
R. Frehlich and L. Cornman, “Estimating Spatial Velocity Statistics With Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 19, 355–366 (2002).
F. Davies, C. G. Collier, G. N. Pearson, and K. E. Bozier, “Doppler Lidar Measurements of Turbulent Structure Function Over an Urban Area,” J. Atmos. Ocean. Technol. 21, 753–761 (2004).
R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of Boundary Layer Profiles in Urban Environment,” J. Appl. Meteorol. 45, 821–837(2006).
V.A. Banakh, S. Rahm, I.N. Smalikho and A.V. Falits “Measurements of Atmospheric Turbulence Parameters by Vertically–Scanning Pulse Coherent Wind Lidar”, Atmos. Ocean. Opt. 20, 1019–1023 (2007).
R. Frehlich, “Estimation of Velocity Error for Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 18, 1628–1639(2001).
J. Lamley and H. Panofsky, The Structure of Atmospheric Turbulence (Wiley Intersci., New York, 1964; Mir, Moscow, 1966).
N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].
N. Kelley, M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, “Lamar Low–Level Jet Program,” Interim Report, National Renewable Energy Laboratory, Golden, CO, NREL Report TP-500-34593 (2004).
C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickman, “High–Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).
N. D. Kelley, B. J. Jonkman, G. N. Scott, and Y L. Pichugina, “Comparing Pulsed Doppler Lidar With Sodar and Direct Measurements for Wind Assessment,” Conf. Paper NREL/CP-50041792, Presented at AWEA’s 2007 Windpower Conf. Los Angeles, California, June 3–6, 2007.
Y. L. Pichugina, R. M. Banta, N. D. Kelley, and W A. Brewer, “Nocturnal Boundary Layer Height Estimate From Doppler Lidar Measurements, ” in Proc. of the 18th Sympos. on Boundary Layer and Turbulence, Stockholm, Sweden, June, 2008, 7B.6.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.A. Banakh, I.N. Smalikho, E.L. Pichugina, W.A. Brewer, 2010, published in Optica Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Banakh, V.A., Smalikho, I.N., Pichugina, E.L. et al. Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar. Atmos Ocean Opt 23, 48–54 (2010). https://doi.org/10.1134/S1024856010010100
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856010010100