Skip to main content

Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar

Abstract

The representativeness of measurements of the dissipation rate of atmospheric turbulence energy by 2–nicron pulsed coherent Doppler lidar scanning in the vertical plane is studied experimentally. A comparison of the results of simultaneous measurements of the dissipation rate at different altitudes in the atmospheric boundary layer by lidar and four sonic anemometers has shown that the lidar estimate has a small bias and its relative error does not exceed 25%.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. N. Smalikho and S. Rahm “Lidar Investigation of the Effect of Wind and Atmospheric Turbulence on Aircraft Wake Vortices”, Opt. Atmosf. Okeana 22, 1160–1169 (2009) [Atmos. Ocean. Opt. 23, No. 2, 2010, in press].

    Google Scholar 

  2. 2.

    F. Holzapfel and R. E. Robins, “Probabilistic Two–Phase Aircraft Wake–vortex Model: Application and Assessment,” J. Aircraft. 41 (1), 1–10 (2004).

    Article  Google Scholar 

  3. 3.

    I. N. Smalikho, F. Kopp, and S. Rahm, “Measurement of Atmospheric Turbulence by 2 µm Doppler Lidar,” J. Atmos. Ocean. Technol. 22, 1733–1747 (2005).

    Article  ADS  Google Scholar 

  4. 4.

    I. N. Smalikho and S. Rahm “Measurements of Aircraft Wake Vortex Parameters with a Coherent Doppler Lidar”, Atmos. Ocean. Opt. 21, 854–868 (2008).

    Google Scholar 

  5. 5.

    R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of Boundary Layer Profiles in Urban Environment,” J. Appl. Meteorol. 45, 821–837 (2006).

    Article  Google Scholar 

  6. 6.

    I. N. Smalikho “Accuracy of the Turbulent Energy Dissipation Rate Estimation from the temporal Spectrum of Wind Velocity Fluctuations ”, Atmos. Ocean. Opt. 10,559–563 (1997).

    Google Scholar 

  7. 7.

    R. M. Hardesty, “Performance of a Discrete Spectral Peak Frequency Estimator for Doppler Wind Velocity Measurements,” IEEE Trans. Geosci. Remote Sens. 24, 777–783 (1986).

    Article  ADS  Google Scholar 

  8. 8.

    B. J. Rye and R. M. Hardesty, “Discrete Spectral Peak Estimation in Incoherent Backscatter Heterodyne Lidar. I: Spectral Accumulation and the Cramer–Rao Lower Bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27(1993).

    Article  ADS  Google Scholar 

  9. 9.

    B. J. Rye and R. M. Hardesty, “Discrete Spectral Peak Estimation in Incoherent Backscatter Heterodyne Lidar. II: Correlogram Accumulation,“ IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).

    Article  ADS  Google Scholar 

  10. 10.

    R. Frehlich and M. J. Yadlowsky, “Performance of Mean–requency Estimators for Doppler Radar and Lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994).

    Article  ADS  Google Scholar 

  11. 11.

    V. A. Banakh and I. N. Smalikho “Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data ”, Atmos. Ocean. Opt. 10, 957–965 (1997).

    Google Scholar 

  12. 12.

    R. Frehlich, “Effect of Wind Turbulence on Coherent Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 14 (10), 54–75 (1997).

    Article  ADS  Google Scholar 

  13. 13.

    R. Frehlich and L. Cornman, “Estimating Spatial Velocity Statistics With Coherent Doppler Lidar,” J. Atmos. Ocean. Technol. 19, 355–366 (2002).

    Google Scholar 

  14. 14.

    F. Davies, C. G. Collier, G. N. Pearson, and K. E. Bozier, “Doppler Lidar Measurements of Turbulent Structure Function Over an Urban Area,” J. Atmos. Ocean. Technol. 21, 753–761 (2004).

    Article  ADS  Google Scholar 

  15. 15.

    R. Frehlich, Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, “Measurements of Boundary Layer Profiles in Urban Environment,” J. Appl. Meteorol. 45, 821–837(2006).

    Article  Google Scholar 

  16. 16.

    V.A. Banakh, S. Rahm, I.N. Smalikho and A.V. Falits “Measurements of Atmospheric Turbulence Parameters by Vertically–Scanning Pulse Coherent Wind Lidar”, Atmos. Ocean. Opt. 20, 1019–1023 (2007).

    Google Scholar 

  17. 17.

    R. Frehlich, “Estimation of Velocity Error for Doppler Lidar Measurements,” J. Atmos. Ocean. Technol. 18, 1628–1639(2001).

    Article  ADS  Google Scholar 

  18. 18.

    J. Lamley and H. Panofsky, The Structure of Atmospheric Turbulence (Wiley Intersci., New York, 1964; Mir, Moscow, 1966).

    Google Scholar 

  19. 19.

    N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  20. 20.

    N. Kelley, M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, “Lamar Low–Level Jet Program,” Interim Report, National Renewable Energy Laboratory, Golden, CO, NREL Report TP-500-34593 (2004).

  21. 21.

    C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickman, “High–Resolution Doppler Lidar for Boundary Layer and Cloud Research,” J. Atmos. Ocean. Technol. 18, 376–393 (2001).

    Article  ADS  Google Scholar 

  22. 22.

    N. D. Kelley, B. J. Jonkman, G. N. Scott, and Y L. Pichugina, “Comparing Pulsed Doppler Lidar With Sodar and Direct Measurements for Wind Assessment,” Conf. Paper NREL/CP-50041792, Presented at AWEA’s 2007 Windpower Conf. Los Angeles, California, June 3–6, 2007.

  23. 23.

    Y. L. Pichugina, R. M. Banta, N. D. Kelley, and W A. Brewer, “Nocturnal Boundary Layer Height Estimate From Doppler Lidar Measurements, ” in Proc. of the 18th Sympos. on Boundary Layer and Turbulence, Stockholm, Sweden, June, 2008, 7B.6.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Banakh.

Additional information

Original Russian Text © V.A. Banakh, I.N. Smalikho, E.L. Pichugina, W.A. Brewer, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banakh, V.A., Smalikho, I.N., Pichugina, E.L. et al. Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar. Atmos Ocean Opt 23, 48–54 (2010). https://doi.org/10.1134/S1024856010010100

Download citation

Keywords

  • Lidar
  • Dissipation Rate
  • Lidar Data
  • Sonic Anemometer
  • Lidar Measurement