Skip to main content

Neural networks for CO2 profile retrieval from the data of GOSAT/TANSO-FTS


The feasibility of the retrieval of CO2 vertical profiles and its column-averaged concentration by reflected solar radiation measured by the TANSO-FTS sensor onboard the GOSAT satellite is demonstrated. Model spectra in the 0.76-µm O2 band and CO2 bands near 1.6 and 2.06 µm were used to train the neural network for CO2 retrieval. Separate neural networks were developed for each of the four scanning angles; the solar zenith angle was considered as a continuous variable. An accuracy of better than 1 ppm for column-averaged values and better than 4 ppm for the surface CO2 concentration were achieved. A 1: 300 noise level in the spectra was set for all spectral ranges.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. P. Tans, I. Y. Fung, and T. Takahashi, “Observation Constraints on the Global Atmospheric CO2 Budget,” Science 247, 1431–1438 (1990).

    Article  ADS  Google Scholar 

  2. 2.

    P. J. Rayner and D. M. O’ Brien, “The Utility of Remotely Sensed CO2 Concentration Data in Surface Source Inversions,” Geophys. Res. Lett. 28, 175–178 (2001).

    Article  ADS  Google Scholar 

  3. 3.

    Http:// (20.04.2009).

  4. 4.

    T. Hamazaki, Y. Kaneko, and A. Kuze, “Carbon Dioxide Monitoring From the GOSAT Satellite,” in Proc. of the XXth ISPRS Congress, 12-23 July, Istanbul, Turkey, 2004, pp. 225–227.

  5. 5.

    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A New Software Tool for Radiative Transfer Calculations and Its Application to IMG/ADEOS Data,” J. Quant. Spectrosc. Radiat. Transf. 68, 435–451 (2001).

    Article  ADS  Google Scholar 

  6. 6.

    C. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved Algorithm for Calculations of Ray-leigh_scattering Optical Depth in Standard Atmospheres,” Appl. Opt. 44, 3320–3341 (2005).

    Article  ADS  Google Scholar 

  7. 7.

    L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer. 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  8. 8.

    J.-L. Roujean, M. Leroy, and P.-Y. Dechamps, “A Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Data,” J. Geophys. Res. D 97, 20455–20468 (1992).

    ADS  Google Scholar 

  9. 9.

    H. Rahman, M. M. Verstraete, and B. Pinty, “Coupled Surface-Atmosphere Reflectance Model. 1. Model Description and Inversion on Synthetic Data,” J. Geo-phys. Res. D 98, 20779–20789 (1993).

    Article  ADS  Google Scholar 

  10. 10.

    H. Rahman, B. Pinty, and M. M. Verstraete, “Coupled Surface-Atmosphere Reflectance (CSAR) Model 2. Semiempirical Surface Model Usable With NOAA Advanced Very High Resolution Radiometer Data,” J. Geophys. Res. D 98, 20791–20801 (1993).

    Article  ADS  Google Scholar 

  11. 11. (01.09.2008).

  12. 12.

    Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, Ed. By J. Lenoble (A. Deepak Publ., Hampton, Virginia USA, 1985).

  13. 13.

    F. Chevallier, A. Chedin, F. Cheruy, and J. J. Morcrette, “TIGR-like Atmospheric-profile Databases for Accurate Radiative-Flux Computation,” Quart. J. R. Mete-orol. Soc. 126 (563) Part B, 777–785 (2000).

    Article  ADS  Google Scholar 

  14. 14.

    “GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide,” CD-ROM (NOAA CMDL, Boulder, Colorado, 2005), Also Available on Internet Via Anonymous FTP to ftp.cmdl.noaa. gov, path: Ccg/co2/GLOBALVIEW.

  15. 15.

    U. Schmidt and A. Khedim, “In Situ Measurements of Carbon Dioxide in the Winter Arctic Vortex and at Midlatitudes: An Indicator of the ‘Age’ of Stratospheric Air,” Geophys. Res. Lett. 18, 763–766 (1991).

    Article  ADS  Google Scholar 

  16. 16.

    R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global Observations of the Carbon Budget 1. Expected Satellite Capabilities for Emission Spectroscopy in the EOS and NPOESS Eras,” J. Geophys. Res. D 106, 20055–20068 (2001).

    Article  ADS  Google Scholar 

  17. 17.

    D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations by Error Propagation,” in Parallel Distributed Processing: Explorations in the Macrostructure of Cognition, Vol. 1, Ed. By D. E. Rumelhart and J. L. McClelland (MIT, Cambridge, 1986), pp. 318–362.

    Google Scholar 

  18. 18.

    U. Platt and D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Optical and Laser Remote Sensing, Ed. by D. A. Killinger and A. Mooradien (Springer, New York, 1983), pp. 95–105.

    Google Scholar 

  19. 19.

    M. Minu, Mathematic Programming, Theory and Algoritms (Nauka, Moscow, 1990) [in Russian].

Download references

Author information



Corresponding author

Correspondence to K. G. Gribanov.

Additional information

Original Russian Text © K.G. Gribanov, R. Imasu, V.I. Zakharov, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gribanov, K.G., Imasu, R. & Zakharov, V.I. Neural networks for CO2 profile retrieval from the data of GOSAT/TANSO-FTS. Atmos Ocean Opt 23, 42–47 (2010).

Download citation


  • Hide Layer
  • Solar Zenith Angle
  • Model Spectrum
  • Advance Very High Resolution Radiometer
  • Spectral Channel