Skip to main content
Log in

Propagation of a high-power ultrashort laser pulse along a horizontal atmospheric path

  • Nonlinear Optical Phenomena in the Atmosphere and Ocean
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Experimental results of the study of the evolution of the spatial profile and frequency spectrum of terawatt ultrashort Ti: Sa laser pulses propagating along atmospheric paths in the self-focusing mode are presented. The dependence of the laser radiation energy characteristics at the receiving plane on its initial peak power is determined. The tendency of an increase of the laser beam’s angular size and spectral width when increasing its output power is stated. The obtained regularities have been interpreted qualitatively and quantitatively based on the numerical calculations performed in the framework of the model of the nonstationary self-action of an ultrashort light pulse in air. The ob tained results are compared to the results of the authors’ earlier laboratory experiments on the filamentation of focused laser femtosecond radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Monrou, “Self-Channeling of High-Peak-Power Femtosecond Laser Pulses in Air,” Opt. Lett. 20 (1), 73–75 (1995).

    Article  ADS  Google Scholar 

  2. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical Emission from Self-Guided Femtosecond Pulses in Air,” Opt. Lett. 21 (1), 62–64 (1996).

    Article  ADS  Google Scholar 

  3. Self-Focusing: Past and Present, Ed. By R. W. Boyd, S. G. Lukishova, and Y. R. Shen (Springer-IQEC, 2009).

  4. Q. Luo, S. A. Hosseini, W. Liu, J.-F. Gravel, O. G. Kosareva, N. A. Panov, N. Akozbek, V. P. Kandidov, G. Roy, and S. L. Chin, “Effect of Beam Diameter on the Propagation of Intense Femtosecond Laser Pulses,” Appl. Phys. B 80 (1), 35–38 (2005).

    Article  ADS  Google Scholar 

  5. N. N. Bochkarev, A. A. Zemlyanov, Al. A. Zemlyanov, A. M. Kabanov, D. V. Kartashov, A. V. Kirsanov, G. G. Matvienko, and A. N. Stepanov, “Experimental Study of the Interaction of Femtosecond Laser Pulses With the Aerosol,” Opt. Atmosf. Okeana 17, 971–975 (2004).

    Google Scholar 

  6. G. Mechain, C. D. Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of Plasma Filaments Created in Air by a Multi-terawatt Femtosecond Laser,” Opt. Commun. 247, 171–180 (2005).

    Article  ADS  Google Scholar 

  7. A. Couairon and A. Myzyrowicz, “Femtosecond Filamentation in Transparent Media,” Phys. Rep. 441 (2–4), 47-189 (2007).

    Article  Google Scholar 

  8. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, and J.-P. Wolf, “Ultraintense Light Filaments Transmitted through Clouds,” Appl. Phys. Lett. 83, 213–215 (2003).

    Article  ADS  Google Scholar 

  9. M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and J.-P. Wolf, “Kilometer-range Nonlinear Propagation of Femtosecond Laser Pulses,” Phys. Rev. E 69, 036607 (2004).

    Article  ADS  Google Scholar 

  10. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D.Waite, C. Wedekind, H. Wille, and L. Woste, “Remote Sensing of the Atmosphere Using Ultrashort Laser Pulses,” Appl. Phys. B 71, 573–580 (2000).

    Article  ADS  Google Scholar 

  11. A. A. Zemlyanov and Yu. E. Geints, “Spectral, Energetic, and Angular Characteristics of the Supercontinium Generated By Femtosecond Laser Radiation in Air,” Opt. Atmosf. Okeana 20, 40–47 (2007).

    Google Scholar 

  12. G. G. Matvienko, V. V. Veretennikov, G. M. Krekov, and M. M. Krekova, “Remote Sensing of Atmospheric Aerosols with a White-light Femtosecond Lidar. I. Numerical Simulation,” Opt. Atmosf. Okeana 16, 1107–1114 (2003).

    Google Scholar 

  13. A. A. Zemlyanov, Yu. E. Geints, and D. V. Apeksimov, “Scattering of Supercontinuum Radiation by Spherical Particles Upon Filamentation of Laser Radiation in an Air Medium,” Opt. Atmosf. Okeana 19, 588–592 (2006).

    Google Scholar 

  14. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-Action of Tightly Focused Femtosecond Laser Radiation in Air in a Filamentation Regime: Laboratory and Numerical Experiments,” Opt. Atmosf. Okeana 22, 119–125 (2009) [Atmos. Oceanic Phys. 22,150 (2009)].

    Google Scholar 

  15. S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and Numerical Experiments on Propagation of Strong Femtosecond Laser Radiation through Air and Aerosol Media,” Opt. Atmosf. Okeana 20, 413–419 (2007).

    Google Scholar 

  16. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The Critical Laser Intensity of Self-guided Light Filaments in Air,” Appl. Phys. B 71, 877–879 (2000).

    ADS  Google Scholar 

  17. T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).

    Article  ADS  Google Scholar 

  18. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of Atoms in an Alternating Electric Field,” Zh. Eksp. Teor. Fiz. 50, 1393–1397 (1966) [Sov. Phys. JETP 23, 924 (1966)].

    Google Scholar 

  19. Yu. E. Geints and A. A. Zemlyanov, “Regime of Non-stationar Self-Action of Tightly Focused Strong Femtosecond Laser Pulse in the Air,” Opt. Atmosf. Okeana 21, 793–802 (2008).

    Google Scholar 

  20. K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).

    Article  ADS  Google Scholar 

  21. A. A. Zemlyanov and Yu. E. Geints, “Evolution of Effective Characteristics of Laser Beam of Femtosecond Duration Upon Self-Action in a Gas Medium,” Opt. Spektrosk. 104, 853–865 (2008) [Opt. Spectrosc. 104, 772 (2008)].

    Article  Google Scholar 

  22. A. A. Zemlyanov and Yu. E. Geints, “Integral Parameters of High-Power Femtosecond Laser Radiation During Filamentation in Air,” Opt. Atmosf. Okeana 18, 574–579 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Apeksimova.

Additional information

Original Russian Text © D. V. Apeksimov, Yu. V. Geints, A.A. Zemlyanov, A.M. Kabanov, G.G. Matvienko, A.N. Stepanov, N.S. Zakharov, S. V. Kholod, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apeksimova, D.V., Geints, Y.E., Zemlyanov, A.A. et al. Propagation of a high-power ultrashort laser pulse along a horizontal atmospheric path. Atmos Ocean Opt 23, 14–20 (2010). https://doi.org/10.1134/S1024856010010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010010045

Keywords

Navigation