Skip to main content

Estimation of the test measurement accuracy in problems of optical diagnostics of aerosol microphysical parameters

Abstract

The a priori information accumulated on atmospheric aerosols is considered in application to the problems of the analysis of the informativity of measurements of different optical aerosol characteristics for microphysical aerosol parameters. The necessity of modeling the microphysical variations describing the actual aerosol variability is noted. Based on these principles, a statistical microphysical model of ground aerosols is proposed. Using the model, the variational coefficients of optical aerosol characteristics as functions of the microphysical parameters are calculated. They are incorporated into a computer database and the corresponding computation code. The above computational means are applicable for different problems regarding the analysis of the informativity of the measurements of optical aerosol characteristics, in particular, the estimation of the necessary accuracy of simultaneous (test) microphysical ones. As an example, estimates of the informativity of particular lidar measurements are considered for which regression relations between the optical and microphysical parameters were obtained in the framework of numerical experiments. A good agreement between the retrieved aerosol parameters by the proposed regression relations and the corresponding AERONET data has been shown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Ya. Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Properties, Formation Processes and Impacts of Influence of Atmospheric Aerosol: From Nano- to Global Scales (VVM, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  2. 2.

    V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. 3.

    G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (Tomsk. Filial SO AN SSSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  4. 4.

    G. M. Krekov and S. G. Zvenigorodskii, An Optical Model for the Middle Atmosphere (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  5. 5.

    G. A. d’Almeida, P. Koepke, and E. Shettle, Atmospheric Aerosol: Global Climatology and Radiative Characteristics (Deepak, Hampton, USA, 1991).

    Google Scholar 

  6. 6.

    S. D. Andreev and L. S. Ivlev, Opt. Atmosf. Okeana 8, 788 (1995).

    Google Scholar 

  7. 7.

    S. D. Andreev and L. S. Ivlev, Opt. Atmosf. Okeana 8, 1227 (1995).

    Google Scholar 

  8. 8.

    S. D. Andreev and L. S. Ivlev, Opt. Atmosf. Okeana 8, 1236 (1995).

    Google Scholar 

  9. 9.

    F. X. Kneizis, L. W. Abreu, G. P. Anderson, G. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. S. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clouth, The Modtran 2/3 Report and Lowtran 7 Model (Phillips Laboratory, Hanscon, Massachusetts, 1996).

    Google Scholar 

  10. 10.

    A. V. Vasilyev and L. S. Ivlev, Opt. Atmosf. Okeana 13, 198 (2000).

    Google Scholar 

  11. 11.

    L. S. Ivlev, A. V. Vasilyev, B. D. Belan, M. V. Panchenko, and S. A. Terpugova, in Proc. of the 3rd Intern. Conf. on Natural and Antropogeneous Aerosols, St. Petersburg, 24–27 Sep., 2001 (NIIKh SPbGU, St. Petersburg, 2003), pp. 161–170.

    Google Scholar 

  12. 12.

    A. A. Isakov, S. L. Begunov, S. A. Golovyatinskii, and A. V. Tikhonov, Opt. Atmosf. Okeana 12, 556 (1999).

    Google Scholar 

  13. 13.

    G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, Atmospheric Physics and Climate Problems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  14. 14.

    A. I. Chavro, Yu. S. Georgievskii, M. S. Malkevich, and A. Kh. Shukurov, Izv. Akad. Nauk, Ser. Fiz. Atmosf. Okeana 14, 157 (1978).

    Google Scholar 

  15. 15.

    M. M. Kugeiko and S. A. Lysenko, Zh. Prikl. Spektrosk. 73, 807 (2006).

    Google Scholar 

  16. 16.

    M. M. Kugeiko and S. A. Lysenko, Izmerit. Tekhn., No. 3, 53 (2008).

  17. 17.

    M. M. Kugeiko and S. A. Lysenko, in Laser Physics and Optical Technologies, Proc. of the 7th Intern. Conf., Minsk, 17–19 June, 2008 (Inst. Fiz. NAN Belarusi, Minsk, 2008), pp. 235–238.

    Google Scholar 

  18. 18.

    A. V. Vasilyev, in Proc. of the 3rd Intern. Conf. on Natural and Antropogeneous Aerosols, St. Petersburg, 24–27 Sep., 2001 (NIIKh SPbGU, St. Petersburg, 2003), pp. 98–103

    Google Scholar 

  19. 19.

    A. V. Vasilyev, Vestn. SPbGU, Ser. 4, No. 4, 3 (1996).

  20. 20.

    A. V. Vasilyev, Vestn. SPbGU, Ser. 4, No. 1, 14 (1997).

  21. 21.

    A. V. Vasilyev and I. N. Mel’nikova, Short-Wave Solar Radiation in Earth’s Atmosphere. Calculations. Measurements. Interpretation (NIIKh SPbGU, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  22. 22.

    Yu. M. Timofeev and A. V. Vasilyev, Theoretic Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  23. 23.

    R. F. Rakhimov and M. V. Panchenko, Opt. Atmosf. Okeana 12, 109 (1999).

    Google Scholar 

  24. 24.

    Yu. M. Timofeev and A. V. Polyakov, Mathematical Aspects of Solution of Inverse Problems of Atmospheric Optics (SPb. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  25. 25.

    J. Busenberg, A. Ansmann, J. Baldasano, D. Balis, C. Buckman, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, T. Trickle, G. Vaughan, G. Visconti, and M. Wiegner, in Advances in Laser Remote Sensing, Selected Papers of the 20th Intern. Lader Radar Conf. ILRC (Vichi, France, 2000), pp. 155–158.

    Google Scholar 

  26. 26.

    T. Murayama, N. Sugimoto, I. Matsui, Zh. Lio, T. Sakai, T. Shibata, Y. Iwasaka, J. G. Won, S. C. Yoon, T. Zhou, J. Li, and H. Hu, in Advances in Laser Remote Sensing, Selected Papers of the 20th Intern. Lader Radar Conf. ILRC (Vichi, France, 2000), pp. 169–177.

    Google Scholar 

  27. 27.

    A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, Opt. Atmosf. Okeana 18, 1066 (2005).

    Google Scholar 

  28. 28.

    A. V. El’nikov, V. D. Burlakov, S. I. Dolgii, V. V. Zuev, A. V. Nevzorov, I. I. Plyusnin, S. M. Sysoev, K. I. Bushmeleva, and M. S. Chernyi, Opt. Atmosf. Okeana 19, 982 (2006).

    Google Scholar 

  29. 29.

    I. V. Samokhvalov, S. M. Bobrovnikov, P. P. Geiko, A. V. El’nikov, and B. V. Kaul’, Opt. Atmosf. Okeana 19, 995 (2006).

    Google Scholar 

  30. 30.

    I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D. N. Whiteman, Appl. Opt. 43, 1180 (2004).

    Article  ADS  Google Scholar 

  31. 31.

    I. Veselovskii, A. Kolgotin, D. Muller, and D. N. Whiteman, Appl. Opt. 44, 5292 (2005).

    Article  ADS  Google Scholar 

  32. 32.

    A. V. Vasilyev and L. S. Ivlev, Opt. Atmosf. Okeana 9, 129 (1996).

    Google Scholar 

  33. 33.

    A. M. Chaika, Yu. M. Timofeev, and A. V. Polyakov, Issled. Zemli Kosmosa, No. 2, 10 (2007).

  34. 34.

    http://aeronet.gsfs.nasa.gov (2009).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasilyev.

Additional information

Original Russian Text © A.V. Vasilyev, L.S. Ivlev, M.M. Kugeiko, S.A. Lysenko, N.Yu. Terekhin, 2009, published in Optica Atmosfery i Okeana

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasilyev, A.V., Ivlev, L.S., Kugeiko, M.M. et al. Estimation of the test measurement accuracy in problems of optical diagnostics of aerosol microphysical parameters. Atmos Ocean Opt 22, 630 (2009). https://doi.org/10.1134/S1024856009060098

Download citation

Keywords

  • Oceanic Optic
  • Size Distribution Function
  • Lidar Measurement
  • Aerosol Model
  • Microphysical Parameter