Skip to main content
Log in

Lamps as a new instrument of fluorescent spectroscopy

  • Equipment and Methods of Environmental Diagnostics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of field and numerical experiments devoted to the study of the chlorophyll fluorescence spatial gradient in the plant leaf volume are presented. It is shown for the first time that the continual UV radiation of an exiplex lamp can serve as an efficient source of inducing the process of the spontaneous fluorescence of the leaf photosystem. The computational estimates made by the Monte Carlo method confirm the fact that reabsorption processes are the basic cause of the transformation of the induced spectrum of fluorescence emission during the passing of radiation through the leaf volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Pozdnyakov, A. V. Lyaskovsky, H. Grassl, and L. Pettersson, “Numerical Modelling of the Transspectral Processes (TP) of Interaction of Light with Water medium,” Issled. Zemli iz Kosmosa, No. 5, 3–15 (2000).

  2. C. H. Liu, B. B. Das, W. L. Glassman, and G. C. Tang, “Raman, Ffluorescence and Time-Resolved Light Scattering as Optical Diagnostic Techniques to Separate Diseased and Normal Biomedical Media,” J. Photochem. Photobiol. 16, 187 (1992).

    Article  Google Scholar 

  3. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-Induced Fluorescence for Plant Monitoring: Present State and Prospects,” Agronomie. 19, 543 (1999).

    Article  Google Scholar 

  4. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko et al., “Exilamps of Barrier and Cavity Discharges and Their Application (Review),” Pribory and Tekhnika Eksp. 49(5), 5 (2006).

    Google Scholar 

  5. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, et al., “Exilamps — Efficient Sources of Spontaneous UV and VUV Radiation,” Usp. Fiz. Nauk 173(2), 202 (2003).

    Article  Google Scholar 

  6. V. F. Tarasenko, E. V. Sosnin, “VUV and UV Exilamps and Their Applications,” Proc. SPIE 6261, 361 (2006).

    Google Scholar 

  7. G. M. Krekov, M. M. Krekova, A. A. Lisenko, A. Ya. Sukhanov, M. V. Erofeev, M. I. Lomaev, and V. F. Tarasenko, “Estimate of the Efficiency of Hybrid LIDAR — DOAS Scheme of Lidar Sensing of the Atmospheric Pollution, Based on Pulse Exilamps,” Izv. Vuz., ser. Fizika, 2009 (in press).

  8. G. M. Krekov, M. M. Krekova, A. A. Lisenko, and A. Ya. Sukhanov, “Estimate of Wide-Band Lidar Potentialities for Remote Sensing of Atmospheric Pollution,” in Proc. of the III All-Russian Conference on Interaction of High-Concentrated Energy Fluxes with Materials in Prospective Technologies and Medicine, March, (Sibir. Nauchn. Izd., Novosibirsk, 2009, p. 85.

    Google Scholar 

  9. G. M. Krekov, M. M. Krekova, A. A. Lisenko, A. Ya. Sukhanov, M. V. Erofeev, M. I. Lomaev, and V. F. Tarasenko, “Potentialities of the Pulse Exilamps for Remote Sensing Of the Atmospheric Pollution,” 2009 (in press).

  10. G. M. Krekov, M. M. Krekova, G. G. Matvienko, and A. Ya. Sukhanov, “Statistical Modeling of Transspectral Processes at the Laser Sensing of the Environment,” Atmos. Ocean. Opt. 20(3), 262 (2007).

    Google Scholar 

  11. S. Svanberg, “Fluorescence Lidar Monitoring of Vegetation Status,” Phys. Scr., T 58, 79 (1995).

    Article  ADS  Google Scholar 

  12. L. A. Corp, J. E. McMurtney, E. M. Middleton, C. L. Mulchi, E. W. Chappelle, and C. S. Daughtry, “Fluorescence Sensing Systems: In vivo Detection of Biophysical Variations in Field Corn Due to Nitrogen Supply,” Remote Sens. Environ. 86, 470 (2003).

    Article  Google Scholar 

  13. G. M. Krekov, M. M. Krekova, A. A. Lisenko, and G. G. Matvienko, “Reabsorption of Laser-Induced Fluorescence in a Plant Canopy: Stochastic Model,” Opt. and Spectrosc. 106(4), 514 (2009).

    Article  ADS  Google Scholar 

  14. G. M. Krekov, M. M. Krekova, A. A. Lisenko, and A. Ya. Sukhanov, “Radiative Characteristics of Plant Leaf,” Atmos. and Ocean. Opt. 22(2), 241 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Krekov, A.A. Lisenko, G.G. Matvienko, E.A. Sosnin, 2009, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekov, G.M., Lisenko, A.A., Matvienko, G.G. et al. Lamps as a new instrument of fluorescent spectroscopy. Atmos Ocean Opt 22, 556–559 (2009). https://doi.org/10.1134/S1024856009050091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856009050091

Keywords

Navigation