Skip to main content
Log in

Rotational structure of the 000, 010, 001, 020, and 100 vibrational states of H2 18O: Spectroscopic assignment up to J, K a = 30 and critical analysis of the published experimental energy levels and line lists

  • Environmental Spectroscopy
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The complete unambiguous spectroscopic assignment of rotational levels of the 000, 010, 100, 020, and 001 vibrational states of H2 18O up to J, K a = 30 is presented and discussed for the first time; it is based on the isotopically dependent Partridge and Schwenke potential energy surface (PES). The published experimental energy levels for these states have been analyzed on this basis. A comparison of the Partridge-Schwenke (PS) and Shirin, et al. calculated energy levels is also presented and discussed. The obtained results could be useful for the search and assignment of new highly exited states of H2 18O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Schwenke and H. Partridge, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive Ab initio Calculations and Experimental Data,” J. Phys. Chem. 106(1), 4618 (1997).

    Article  Google Scholar 

  2. S. V. Shirin, O. L. Polyansky, N. F. Zobov, R. I. Ovsyannikov, A. G. Csaszar, and J. Tennyson, “Spectroscopically Determined Potential Energy Surfaces of the H2 16O, H2 17O, and H2 18O Isotopologues of Water,” J. Mol. Spectrosc. 236(2), 216 (2006).

    Article  ADS  Google Scholar 

  3. S. V. Shirin, N. F. Zobov, R. I. Ovsyannikov, O. L. Polyansky, and J. Tennyson, “Water Line Lists Close to Experimental Accuracy Using a Spectroscopically Determined Potential Energy Surface for H2 16O, H2 17O and H2 18O,” J. Chem. Phys. 128(22), 224 306 (2008).

    Article  Google Scholar 

  4. S. N. Yurchenko, B. A. Voronin, R. N. Tolchenov, N. Doss, O. V. Naumenko, W. Thiel, and J. Tennyson, “Potential Energy Surface of HDO up to 25 000 cm−1,” J. Chem. Phys. 128(4), 044312 (2008).

    Article  ADS  Google Scholar 

  5. S. V. Shirin, N. F. Zobov, and O. L. Polyansky, “Theoretical Line List of D 2 16O up to 16 000 cm−1 with an Accuracy Close to Experimental,” J. Quant. Spectrosc. and Radiat. Transfer. 109(4), 549 (2008).

    Article  ADS  Google Scholar 

  6. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A High-Accuracy Computed Water Line List,” Mon. Notc. Roy. Astron. Soc. 368(2), 1087 (2006).

    Article  ADS  Google Scholar 

  7. http://spectra.iao.ru/

  8. D. Papousek and M. R. Aliev, Molecular vibration-rotational spectra (Elsevier, Amsterdam, 1982).

    Google Scholar 

  9. D. W. Schwenke, “Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules,” J. Phys. Chem. 100(8), 2867 (1996).

    Article  Google Scholar 

  10. J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J. Ramanlal, and N. F. Zobov, “DVR3D: a Program Suite for the Calculation of Rotation-Vibration Spectra of Triatomic Molecules,” Comp. Phys. Commun. 163(2), 85 (2004).

    Article  ADS  Google Scholar 

  11. N. F. Zobov, O. L. Polyansky, V. A. Savin, and S. V. Shirin, “Assignment of Quantum Numbers to Calculated Highly Excited Energy Levels of Water Molecule,” Optika Atmos. i Ookeana 13(12), 1107 (2000) [Atmos. Ocean. Opt. 13 (12), 1024 (2000)].

    Google Scholar 

  12. G. Li and H. Guo, “The Vibrational Level Spectrum of H2O (X 1 A 0) on a Partridge-Schwenke Potential up to the Dissociation Limit,” J. Mol. Spectrosc. 210(1), 90 (2001).

    Article  ADS  Google Scholar 

  13. N. F. Zobov, R. I. Ovsyannikov, S. V. Shirin, and O. L. Polyansky, “Assignment of Quantum Numbers to Theoretical Spectra of Molecules H2 16O, H2 17O, and H2 18O, Calculated by Variational Methods in the Region 0-26 000 cm−1,” Optika i Spektrosk. 102(3), 390 (2007) [Opt. And Spectrosc. 102 (3), 348 (2007)].

    Google Scholar 

  14. J. K. G., “Watson Simplification of the Molecular Vibration-Rotation Hamiltonian,” Mol. Phys. 15(5), 479 (1968).

    Article  ADS  Google Scholar 

  15. Vl. G. Tyuterev, “The Generating Function Approach to the Formulation of the Rotational Effective Hamiltonian,” J. Mol. Spectrosc. 151(1), 97 (1992).

    Article  ADS  Google Scholar 

  16. Vl. G. Tyuterev, V. I. Starikov, S. A. Tashkun, and S. N. Mikhailenko, “Calculation of High Rotation Energies of the Water Molecule Using the Generating Function Model,” J. Mol. Spectrosc. 170(1), 38 (1995).

    Article  ADS  Google Scholar 

  17. S. N. Mikhailenko, Vl. G. Tyuterev, V. I. Starikov, K. K. Albert, B. P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J.-M. Flaud, J. W. Brault, “Water Spectra in the 4200–6250 cm−1 Region: Extended Analysis of ν1 + ν2, ν2 + ν3, and 3ν2 Bands and Confirmation of Highly Excited States from Flame Spectra and from Atmospheric Long-Path Observations,” J. Mol. Spectrosc. 213(2), 91 (2002).

    Article  ADS  Google Scholar 

  18. J. Lamouroux, S. A. Tashkun, and Vl. G. Tyuterev, “Accurate Calculation of Transition Moment Parameters for Ro-Vibrational Bands from Ab initio Dipole and Potential Surfaces: Application to Fundamental Bands of the Water Molecule,” Chem. Phys. Lett. 452(1–3), 225 (2008).

    Article  ADS  Google Scholar 

  19. An-Wen Liu, Jun-He Du, Ke-Feng Song, Le Wang, Lei Wan, and Shui-Ming Hu, “High-Resolution Fourier-Transform Spectroscopy of 18O-Enriched Water Molecule in the 1080–7800 cm−1 Region,” J. Mol. Spectrosc. 237(2), 149 (2006).

    Article  ADS  Google Scholar 

  20. F. Winther, “The Rotational Spectrum of Water between 650 and 50 cm−1 H2 18O and H2 17O in Natural Abundance,” J. Mol. Spectrosc. 65(3), 405 (1977).

    Article  ADS  Google Scholar 

  21. P. Helminger and F. De Lucia, “Centrifugal Distortion Analysis of the Ground Vibrational States of H2 17O and H2 18O,” J. Mol. Spectrosc. 70(2), 263 (1978).

    Article  ADS  Google Scholar 

  22. A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, Vl. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of Water Vapor Line Parameters in the 4200–6600 cm−1 Region,” J. Quant. Spectrosc. and Radiat. Transfer. 105(2), 326 (2007).

    Article  ADS  Google Scholar 

  23. S. N. Mikhailenko, Vl. G. Tyuterev, and G. Mellau, “(000) and (010) States of H2 18O: Analysis of Rotational Transitions in Hot Emission Spectrum in the 400–850 cm−1 Region,” J. Mol. Spectrosc. 217(2), 195 (2003).

    Article  ADS  Google Scholar 

  24. A. D. Bykov, V. N. Saveliev, and O. N. Ulenikov, “Rotational and Centrifugal Parameters of H2 17O and H2 18O (010) States,” J. Mol. Spectrosc. 118(1), 313 (1986).

    Article  ADS  Google Scholar 

  25. C. Camy-Peyret, J.-M. Flaud, J. Y. Mandin, and R. A. Toth, “Line Positions and Intensities for the ν1 + ν2 and ν2 + ν3 Bands H2 18O,” J. Mol. Spectrosc. 70(3), 361 (1978).

    Article  ADS  Google Scholar 

  26. P. E. Fraley, K. Narahari Rao, and L. H. Jones, “High Resolution Infrared Spectra of Water Vapor ν1 and ν3 Bands of H2 18O,” J. Mol. Spectrosc. 29(1–3), 312 (1969).

    Article  ADS  Google Scholar 

  27. R. A. Toth, “Linelists of Water Vapor Parameters from 500 to 8000 cm−1”, http://mark4sun.jpl.nasa.gov

  28. ftp://iao.ru/pub/water/181

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Tashkun, T.A. Putilova, 2009, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashkun, S.A., Putilova, T.A. Rotational structure of the 000, 010, 001, 020, and 100 vibrational states of H2 18O: Spectroscopic assignment up to J, K a = 30 and critical analysis of the published experimental energy levels and line lists. Atmos Ocean Opt 22, 499–505 (2009). https://doi.org/10.1134/S1024856009050017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856009050017

Keywords

Navigation