Skip to main content

Characteristics of the annual behavior of the spectral aerosol optical depth of the atmosphere under conditions of Siberia


Based on multiyear observations in Tomsk (since 1995, in the wavelength range 0.37–4 μm) and other regions of the Asian part of Russia (2003–2008), we determined the specific features of the annual behavior of the characteristics of the spectral aerosol optical depth (AOD) of the atmosphere. It is shown that AOD peaks are observed in April (0.19 in the region of 0.5 μm) and July, a local minimum in June (less than 0.16), and minimum values in the fall (0.12). The seasonal variations of the Angström selectivity exponent are characterized by elevated values in the warm period (maximum in July) and low values in winter. The closeness of the seasonal variations of aerosol turbidity in three Siberian regions is noted, and the Siberia mean annual behavior of atmospheric AOD characteristics is suggested. The average values of the aerosol optical and microphysical characteristics of the atmospheric depth for characteristic periods of intraannual AOD variations are presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Transparency of Atmospheric Depth in Visible and IR Spectral Region (Gidrometeoizdat, Leningrad, 1991) [In Russian].

    Google Scholar 

  2. 2.

    G. P. Gushchin, Methods, Instruments, and Results of Measurement of Spectral Atmospheric Transparency (Gidrometeoizdat, Leningrad, 1988) [In Russian].

    Google Scholar 

  3. 3.

    E. L. Makhotkina, I. N. Plakhina, and A. B. Lukin, “Some Specific Features of Variations of Atmospheric Turbidity on the Territory of Russia in the Last Quarter of Twentieth Century,” Meteorologiya i Gidrologiya, No. 1, 28 (2005) [Meteorology and Hydrology 1, 28 (2005)].

  4. 4.

    E. V. Yarkho, “Time Variations of Atmospheric Aerosol Optical Depth in Different Climatic Regions,” Izvestiya Rossiiskoi Akademii Nauk. Fizika Atmosfery i Okeana 30(3), 417 (1994).

    Google Scholar 

  5. 5.

    E. V. Gorbarenko, “Atmospheric Aerosol Turbidity in Moscow at the End of Twentieth Century,” Meteorologiya i Gidrologiya, No. 7, 13–18 (2003) [Meteorology and Hydrology, No. 7, 13–18 (2003)].

  6. 6.

    E.V. Gorbarenko, A. E. Erokhina, and A. B. Lukin, “Multiyear Measurements of Atmospheric Aerosol Optical Depth in Russia,” Meteorologiya i Gidrologiya, No. 7, 41 (2006) [Meteorology and Hydrology 7, 41 (2006)].

  7. 7.

    S. M. Sakerin and D. M. Kabanov, “Spectral dependence of the atmospheric aerosol optical depth in the wavelength range from 0.37 to 4 μm,” Optika Atmosfery i Okeana 20(2), 156 (2007) [Atm. Oceanic Opt. 20 (2), 141 (2007)].

    Google Scholar 

  8. 8.

    S. M. Sakerin and D. M Kabanov, “Correlations between the parameters of Angström formula and aerosol optical thickness of the atmosphere in the wave-length range from 1 to 4 μm,” Optika Atmosfery i Okeana 20(3), 222 (2007) [Atm. Oceanic Opt. 20 (3), 200 (2007)].

    Google Scholar 

  9. 9.

    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun photometer for scientific monitoring (instrumentation, techniques, algorithms),” Optika Atmosfery i Okeana 14(12), 1162 (2001) [Atm. Oceanic Opt. 14 (12), 1067 (2001)].

    Google Scholar 

  10. 10.

    S. M. Sakerin D. M. Kabanov, A. P. Rostov, et al., “System for the network monitoring of the atmospheric constituents active in radiative processes. Part 1. Sun photometers,” Optika Atmosfery i Okeana 17(4), 354 (2004). [Atm. Oceanic Opt. 17 (4), 314 (2004)].

    Google Scholar 

  11. 11.

    S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, “Peculiarities of many-year variations of atmospheric aerosol optical thickness and estimates of influence of different factors,” Optika Atmosfery i Okeana 21(7), 625 (2008) [Atm. Oceanic Opt. 21 (7), 540 (2008)].

    Google Scholar 

  12. 12.

    S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, et al., “Monitoring of atmospheric aerosol in the Asian part of Russia in 2004 within the framework of AEROSIBNET program,” Optika Atmosfery i Okeana 18(11), 968 (2005). [Atm. Oceanic Opt. 18 (11), 871 (2005)].

    Google Scholar 

  13. 13.

    B. N. Holben, T. F. Eck, I. Slutsker, et al., “AERONET—A federated instrument network and data archive for aerosol characterization”, Remote Sens. Environ. 66(1), 1.

  14. 14.

    O. T. Dubovik and M. King, “A flexible inversion algorithm for retrieval aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. D 105(16), 20673 (2000).

    Article  ADS  Google Scholar 

  15. 15.

    O. Dubovik, A. Smirnov, B. Holben, et al., Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res. D 105, 89791 (2000).

    Google Scholar 

  16. 16.

    A. Smirnov, B. N. Holben, T. F. Eck, et al., Cloud screening and quality control algorithms for the AERONET data base?, Remote Sens. Environ. 73,3, 337 (2000).

    Article  Google Scholar 

  17. 17.

    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, et al., Information system for network solar photometers, Optika Atmosfery i Okeana, 22, No. 1, 61 (2009) [Atm. Oceanic Opt. 22, No. 1, (2009)].

    Google Scholar 

  18. 18.

    M. Weller, E. Schulz, U. Leiterer, et al., “Ten years of aerosol optical depth observation at the Lindenberg meteorological observatory,” Contrib. Atmos. Phys. 71, No. 4, 387 (1998).

    Google Scholar 

  19. 19.

    B. N. Holben, D. Tanre, A. Smirnov, et al., An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET?, J. Geophys. Res. 106,D11, 12067 (2001).

    Article  ADS  Google Scholar 

  20. 20.

    A. Smirnov, N. T. O’Neill, A. Royer, and A. Tarussov, “Aerosol optical depth over Canada and the link with synoptic air mass types,” J. Geophys. Res. 101,D14, 19299 (1996).

    Article  ADS  Google Scholar 

  21. 21.

    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters, Optika Atmosfery i Okeana 22, No. 2, 163 (2009) [Atm. Oceanic Opt. 22, No. 2, (2009)].

    Google Scholar 

  22. 22.

    B. N. Holben, T. F. Eck, I. Slutsker, et al, “AERONET’s version 2.0 quality assurance criteria?,” in Proceedings of SPIE, 2006, p. 6408.

  23. 23.

    O. Dubovik, B. Holben, T. Eck, et al., “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, No. 3, 590 (2002).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. M. Sakerin.

Additional information

Original Russian Text © S.M. Sakerin, S.A. Beresnev, S.Yu. Gorda, D.M. Kabanov, G.I. Kornienko, Yu.I. Markelov, A.V. Mikhalev, S.V. Nikolashkin, M.V. Panchenko, V.A. Poddubnyi, V.V. Pol’kin, A. Smirnov, M.A. Tashchilin, S.A. Turchinovich, Yu.S. Turchinovich, B. Holben, T.A. Eremina, 2009, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakerin, S.M., Beresnev, S.A., Gorda, S.Y. et al. Characteristics of the annual behavior of the spectral aerosol optical depth of the atmosphere under conditions of Siberia. Atmos Ocean Opt 22, 446–456 (2009).

Download citation


  • Aerosol Optical Depth
  • Oceanic Optic
  • Annual Behavior
  • Single Scattering Albedo
  • Scatter Phase Function