Skip to main content

Global warming mitigation by means of controlled aerosol emissions into the stratosphere: Global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations


The problem of climate warming mitigation by means of controlled sulphur emissions into the stratosphere has become of growing interest in recent years. Using the IAP RAS global climate model with uniform horizontal distribution of stratospheric aerosols, it has been shown that a complete compensation of global warming, realizable under the SRES A1B scenario of the anthropogenic impact on climate, requires stratospheric sulfate emissions of 5–16 TgS/yr (depending on the chosen values of stratospheric aerosol parameters) in the middle and of 10–30 TgS/yr at the end of the 21st century. Such emissions will result in the essential additional aerosol pollution of the troposphere due to the sedimentation of stratospheric aerosol particles there. Significant-in-magnitude regional anomalies of the surface air temperature of different signs occur in global warming compensation in different regions. Warming compensation in the most sensitive to climate forcing Earth regions (in particular, Siberia), additionally increases the required emissions of stratospheric aerosols by about 10%. In addition, in the case of ceasing such controlled climate forcing, its temperature effect vanishes in one to two decades with a sharp acceleration of global and regional near-surface warming in this period. Thus, the rate of regional temperature changes will attain 3–4 K/decade if the compensating action ceases in 2075.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. T. Houghton, Y. Ding, D. J. Griggs, et al., Eds., Cli-mate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (New York, Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  2. 2.

    S. Solomon, D. Qin, M. Manning, et al., Eds., Climate Change 2007: The Physical Science Basis (New York, Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  3. 3.

    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Models and Their Estimations on the Base of the Global Model IAP RAS,” Doklady RAS 402(2), 243 (2005) [Dokl. Earth Sci. 402 (4), 591 (2005)].

    Google Scholar 

  4. 4.

    M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  5. 5.

    S. H. Schneider, “Geoengineering: Could—or should—We Do It?,” Clim. Change 33(3), 291 (1996).

    Article  Google Scholar 

  6. 6.

    S. H. Schneider, “Earth Systems Engineering and Management,” Nature 409(6868), 417 (2001).

    Article  ADS  Google Scholar 

  7. 7.

    Yu. A. Izrael’, “An Effective Way of Conservation of Climate at the Present Level is the Main Purpose of Climate Problem Solution,” Meteor. Gidrol., No. 10, 5 (2005) [Rus. Meteorol. Hydrol. 30 (10), 1 (2005)].

  8. 8.

    P. J. Crutzen, “Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?,” Clim. Change 77(3–4), 211 (2006).

    Article  Google Scholar 

  9. 9.

    T. M. L. Wigley, “A Combined Mitigation/Geoengineering Approach to Climate Stabilization,” Science 314(5798), 452 (2006).

    Article  ADS  Google Scholar 

  10. 10.

    A. Robock, L. Oman, and G. L. Stenchikov, “Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections,” J. Geophys. Res. D 113(16), 16 101 (2008).

    Article  Google Scholar 

  11. 11.

    A. V. Eliseev and I. I. Mokhov, “Model Estimations of the Efficiency of Global Climate Mitigation Depending on the Scenarios of Controlled Aerosol Emission to the Stratosphere,” Izv. RAN, Fiz. Atmosf. i Okeana 45, (2009) [Izvestiya, Atmospheric and Oceanic Physics 45 (2), 221 (2009)].

  12. 12.

    P. Ya. Groisman, “Regional Climate Impacts of Volcanic Eruptions,” Meteor. Gidrol., No. 4, 39 (1985).

  13. 13.

    P. Ya. Groisman, “Possible Regional Climate Consequences of the Pinatubo Eruption: an Empirical Approach,” Geophys. Res. Lett. 19(15), 1603 (1992).

    Article  ADS  Google Scholar 

  14. 14.

    K. E. Trenberth and A. Dai, “Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle as an Analog of Geoengineering,” Geophys. Res. Lett. 34(15), L15 702 (2007).

    Article  Google Scholar 

  15. 15.

    H. D. Matthews and K. Caldeira, “Transient Climate-Carbon Simulations of Planetary Geoengineering,” Proc. Nat. Acad. Sci. 104(24), 9949 (2007).

    Article  ADS  Google Scholar 

  16. 16.

    S. Tilmes, R. Muller, and R. Salawitch, “The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes,” Science 320(5880), 1201 (2008).

    Article  ADS  Google Scholar 

  17. 17.

    P. J. Rasch, P. J. Crutzen, and D. B. Coleman, “Exploring the Geoengineering of Climate Using Stratospheric Sulfate Aerosols: The Role of Particle Size,” Geophys. Res. Lett. 35(2), L02 809 (2008).

    Article  Google Scholar 

  18. 18.

    A. V. Eliseev and I. I. Mokhov, “An Influence of Volcanic Activity on Climate Change in Several Last Centuries: Estimations on the Base of a Climate Model of Moderate Complexity,” Izv. RAN, Fiz. atmosf. i okeana 44(6), 723 (2008) [Izvestiya, Atmospheric and Oceanic Physics 44 (6), 671 (2008)].

    Google Scholar 

  19. 19.

    I. I. Mokhov and A. V. Eliseev, Geoengineering Efficiency: Preliminary Assessment with a Climate Model of Intermediate Complexity, Research Activities in Atmospheric and Oceanic Modelling. WGNE-38, Ed., Cote J. (World Climate Research Program, Genewa, 2008), p. 07.21.

    Google Scholar 

  20. 20.

    G. J. S. Bluth, S. D. Doiron, C. C. Schnetzler, et al., “Global Tracking of the SO2 Clouds from the June 1991 Mount Pinatubo Eruptions,” Geophys. Res. Lett. 19(2), 151 (1992).

    Article  ADS  Google Scholar 

  21. 21.

    J. Hansen, M. Sato, L. Nazarenko, et al., “Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations,” J. Geophys. Res. D 107(18), 4347 (2002).

    Article  ADS  Google Scholar 

  22. 22.

    K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Processes of Formation, and Aftereffects of Atmospheric Aerosol Impacts. 7. Aerosol Radiative Forcing and Climate,” Opt. Atmos. i Okeana, 18(7), 535 (2005) [Atmos. Ocean Optics, 18 (7), 479 (2005)].

    Google Scholar 

  23. 23.

    J. Hansen, A. Lacis, R. Ruedy, and M. Sato, “Potential Climate Impact of Mount Pinatubo Eruption,” Geophys. Res. Lett. 19(2), 215 (1992).

    Article  ADS  Google Scholar 

  24. 24.

    S. J. Smith, H. Ritsher, and T. L. Wigley, “Global and Regional Anthropogenic Sulfur Dioxide Emissions,” Glob. Planet. Change 29(1–2), 99 (2001) [in Russian].

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Original Russian Text © A.V. Eliseev, I.I. Mokhov, A.A. Karpenko, 2009, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eliseev, A.V., Mokhov, I.I. & Karpenko, A.A. Global warming mitigation by means of controlled aerosol emissions into the stratosphere: Global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations. Atmos Ocean Opt 22, 388–395 (2009).

Download citation


  • Oceanic Physic
  • Oceanic Optic
  • Sulfate Aerosol
  • Stratospheric Aerosol
  • Aerosol Emission