Atmospheric and Oceanic Optics

, Volume 22, Issue 3, pp 359–364 | Cite as

Substantiation of the possibility of direct measurements of radiative heat influx in the atmosphere

  • A. A. Eliseev
  • D. V. Rumyantsev
  • V. A. Frol’kis
Equipment and Methods of Environmental Diagnostics


Numerical experiments simulating measurements with ideal (linear) and real receivers are performed to estimate the possibility of using an optical-acoustic detector for measuring a radiative heat influx (RHI) based on line-by-line calculations. The error of the real receiver is estimated with respect to an ideal one. To this end, a long-wave RHI is calculated in detectors of different sizes where the concentrations of water vapor and carbonic acid gas and the spectral composition of incident radiation is characteristic for the atmospheric surface layer. The consideration of some hypothetical situations allows us to simulate a wide range of conditions in the atmospheric surface layer and to evaluate how they affect measurement errors. Line-by-line calculations of absorption are performed using the HITRAN database. A connection between the relative error attributed to the nonlinearity of absorption, the size of the receiver, and the measurement conditions is analyzed. This is vitally important in the case when large vertical temperature gradients are observed at the point of measurements. For a receiver not larger than 2 cm and in case of normal conditions in the atmospheric surface layer, the error does not exceed 10–20%. The calculation confirms the admissibility of using optical-acoustic detectors for direct measurements of the radiative heat influx in the atmosphere.

Key words

line-by-line calculations of absorbed radiation radiative heat influx (RHI) optical-acoustic receiver (spectrophone) radiative balance of air volume greenhouse gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Gergen, J. Meteorol. 15, 350 (1958).Google Scholar
  2. 2.
    J. P. Funk, J. Opt. Soc. Amer. 50(10), 986 (1960).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    G. N. Kostyanoi, Izv. Ross. Akad. Nauk, Fiz. Atmosfer. i Okeana 2(5), 501 (1966).Google Scholar
  4. 4.
    K. Ya. Kondrat’ev, On a possibility of radiative heat influx direct measurements (LGU, 1963), pp. 3–16 [in Russian].Google Scholar
  5. 5.
    V. P. Zharov and V. S. Letokhov, Laser opto-acoustic spectroscopy (Nauka, Moscow, 1984) [in Russian].Google Scholar
  6. 6.
    Yu. S. Makushkin, An opto-acoustic method in laser spectroscopy of atmospheric gases (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  7. 7.
    A. A. Eliseev, Izv. Ross. Akad. Nauk, Fiz. Atmosfer. i Okeana 13(10), 1018 (1977).ADSGoogle Scholar
  8. 8.
    J. S. Foot, Quart. J. Royal Meteorol. Soc. 105(443), 275 (1979).CrossRefADSGoogle Scholar
  9. 9.
    A. A. Eliseev and D. V. Rumyantsev, “An Actual and an Ideal Radiation Heat Flux Divergence Detectors, a Lineby-Line Calculations of Longwave Radiation in Measurements by spectrophone, Current Problems in Atmospheric Radiation,” in Proceedings of International Symposium (St.-Petersburg State University, St.-Petersburg, 2000), p. 232.Google Scholar
  10. 10.
    R. M. Kazhdan and F. N. Shekhter, Tr. GGO Im. A.I. Voeikova, No. 127, 26 (1962).Google Scholar
  11. 11.
    K. Ya. Kondrat’ev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].Google Scholar
  12. 12.
    A. A. Eliseev, V. I. Privalov, N. N. Paramonova, and Z. M. Utina, Izv. Ross. Akad. Nauk, Fiz. Atmosfer. i Okeana 38(5), 649 (2002).Google Scholar
  13. 13.
    L. S. Rothman, C. P. Rinsland, A. Goldman, et al, J. Quant. Spectrosc. Radiat. Transfer 60(5), 665 (1998).CrossRefADSGoogle Scholar
  14. 14.
    A. D. Frolov and A. A. Shashkov, Tr. GGO Im. A.I. Voeikova, No. 369, 41 (1976).Google Scholar
  15. 15.
    E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical materials for infrared devices (Nauka, Moscow, 1965) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. A. Eliseev
    • 1
  • D. V. Rumyantsev
    • 1
  • V. A. Frol’kis
    • 1
  1. 1.Voeikov Main Geophysical ObservatoryBranch of the Research Center for Atmospheric Remote SensingVoeikovo, Leningrad oblastRussia

Personalised recommendations