Skip to main content

Estimation of the broadband lidar potential for remote sensing of the molecular atmosphere

Abstract

The results of a closed numerical experiment devoted to the laser sensing of the water vapor and trace gas concentrations in the tropospheric layer of the atmosphere based on a new LIDAR-DOAS hybrid technology using atmospheric aerosol as a distributed route reflector are discussed. The quantitative estimations, performed based on the Monte Carlo method, confirm the perspectives of a similar approach, which extends the potential of the classical scheme of differential optical atmospheric spectroscopy (DOAS) used to distantly control and localize dangerous anthropogenic emissions of toxic gases up to the tropopause altitude. The statistical modeling algorithms should be substantially modified, since it is necessary to estimate lidar returns with a high spectral resolution based on the transient transfer equation. A new method, which takes into account selective absorption of the gaseous atmosphere, has been used to locally estimate a flux. The combination of this method with the genetic algorithm for solving the inverse problem of reconstructing the required tropospheric gas components makes it possible to accurately quantitatively predict the efficiency of the developed lidar systems of environmental monitoring.

This is a preview of subscription content, access via your institution.

References

  1. R. M. Schotland, “The Detection of the Vertical Profile of Atmospheric Gases by Means of a Ground-Based Optical Radar,” in Proceedings of the Third Symposium on Remote Sensing of the Environment, USA, Michigan, 1964, pp. 215–224.

  2. V. E. Zuev, Laser Beam in the Atmosphere (Plenum. Publ. Corp., New York, 1981).

    Google Scholar 

  3. A. J. Gibson and L. Thomas, “Ultraviolet Laser Sounding of the Troposphere and Lower Stratosphere,” Nature (Gr. Brit.) 256(5578), 561 (1975).

    Article  ADS  Google Scholar 

  4. V. Mattias, J. Bosenberg, V. Frendenthaler, et al., “Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 1. Instruments,” Appl. Opt. 43,961–976 (2004).

    Article  ADS  Google Scholar 

  5. S. Godin, A. I. Carswell, D. P. Donovan, et al., “Ozone Differential Absorption Lidar Algorithm Intercomparison,” Appl. Opt. 38(30), 6225–6236 (1999).

    Article  ADS  Google Scholar 

  6. L. Fiorani and E. Durieux, “Comparison among Error Calculations in Differential Absorption Lidar Measurements,” Opt. Laser Technol. 33, 371–377 (2001).

    Article  ADS  Google Scholar 

  7. O. Uchino, M. P. McCormic, T. J. Swissler, and L. R. McMaster, “Error Analysis of DIAL Measurements of Ozone by Shuttle Eximer Lidar,” Appl. Opt. 25(21), 3946–3951 (1986).

    Article  ADS  Google Scholar 

  8. E. V. Browell, S. Ismail, and T. Shipley, “UV DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).

    Article  ADS  Google Scholar 

  9. V. A. Kovalev and J. L. McElroy, “Differential Absorption Lidar Measurement of Vertical Ozone Profiles in the Troposphere that Contains Aerosol Layers with Strong Backscattering Gradients,” Appl. Opt. 33, 8393–8401 (1994).

    Article  ADS  Google Scholar 

  10. O. K. Kostko, V. S. Portasov, V. U. Khattatov, and E. A. Chayanova, Usage of Lasers for Determining the Composition of the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  11. B. Lazzarotto, M. Friound, and G. Larcheveque, “Ozone and Water-Vapor Measurements by Raman Lidar in the Planetary Layers: Error Sources and Field Measurements,” Appl. Opt. 40(18), 2985–2997 (2001).

    Article  ADS  Google Scholar 

  12. G. M. Krekov and M. M. Krekova, “Efficiency of the Methods of Vibrational-Rotational Raman Spectroscopy during Laser Sensing of a Cloudy Atmosphere,” Atmos. Ocean. Optics 18(5), 471 (2005).

    Google Scholar 

  13. H. L. Walmsley and S. J. O’Connor, “The Accuracy and Sensitivity of Infrared Differential Absorption Lidar Measurements of Hydrocarbon Emissions from Process Units,” Pure Appl. Opt. 7A, 907–925 (1998).

    Article  ADS  Google Scholar 

  14. J. F. Noxon, “Nitrogen Dioxide in the Stratosphere and Troposphere Measured by Ground-Based Absorption Spectroscopy,” Science 189, 547–549 (1975).

    Article  ADS  Google Scholar 

  15. J. F. Noxon, E. C. Whipple, and R. S. Hyde, “Stratospheric NO2. 1. Observational Method and Behavior at Midlatitudes,” J. Geophys. Res. 84C, 5047–5076 (1979).

    Article  ADS  Google Scholar 

  16. U. Platt, D. Perner, and H. W. Patz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329–6335 (1979).

    Article  ADS  Google Scholar 

  17. U. Platt, Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).

    Google Scholar 

  18. U. Platt and D. Perner, “Direct Measurements of Atmospheric CH2O, HNO2, NO2, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85C, 7453–7458 (1980).

    Article  ADS  Google Scholar 

  19. U. Platt, “Differential Optical Absorption Spectroscopy,” in Air Monitoring Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (John Wiley & Sons Ltd., Chichester, 2000), pp. 1936–1959.

    Google Scholar 

  20. U. Platt and D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Optical and Laser Remote Sensing, Ed. by D. K. Killinger and A. Mooradian (Springer, New York, 1983), pp. 95–105.

    Google Scholar 

  21. L. S. Rothman, D. Jacquemart, A. Barbe, et al., “The HITRA 2004 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  22. J. M. C. Plane and N. Smith, “Atmospheric Monitoring by Differential Optical Absorption Spectroscopy,” in Spectroscopy in Environmental Science, Ed. by R. J. H. Clark and R. E. Hester (Wiley, Chichester, 1995), pp. 223–262.

    Google Scholar 

  23. J. Stutz and U. Platt, “Numerical Analysis and Estimation of the Statistical Error of Differential Optical Absorption Spectroscopy Measurements with Least-Squares Methods,” Appl. Opt. 35, 41–53 (1996).

    Article  Google Scholar 

  24. A. C. Vandaelea, A. Tsoulib, M. Carleerb, and R. Colinb, “UV Fourier Transform Measurements of Tropospheric O3, NO2, SO2, Benzene, and Toluene,” Environ. Pollut. 116, 193–201 (2002).

    Article  Google Scholar 

  25. A. C. Vandaele and M. Carleer, “Development of Fourier Transform Spectrometry for UV-Visible DOAS Measurements of Tropospheric Minor Constituents,” Appl. Opt. 38, 2630–2639 (1999).

    Article  ADS  Google Scholar 

  26. Pundt and K. U. Mettendorf, “Multibeam Long-Path Differential Optical Absorption Spectroscopy Instrument: A Device for Simultaneous Measurements along Multiple Light Paths,” Appl. Opt. 44, 4985–4994 (2005).

    Article  ADS  Google Scholar 

  27. G. Haonninger, C. von Friedeburg, and U. Platt, “Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS),” Atmos. Chem. Phys. 4, 231–354 (2004).

    Article  Google Scholar 

  28. U. Platt, “Air Pollution Monitoring Systems,” Past-Present-Future,” in Advanced Environmental Monitoring, Ed. by Y. J. Kim and U. Platt (Springer, 2008), pp. 3–20.

  29. R. L. Jones, “A Novel Ranging UV-Visible Spectrometer for Remote Sensing of the Troposphere,” SPIE Opt. Methods Atmos. Chem. 15, 393–402 (1992).

    Google Scholar 

  30. K. Strong and R. L. Jones, “Remote Measurements of Profiles of Atmospheric Constituents with UV-Visible Ranging Spectrometer,” Appl. Opt. 34, 6223–6235 (1995).

    Article  ADS  Google Scholar 

  31. I. M. Povey, A. M. South, C. Hill, et al., “A Broadband Lidar for Measurement of Tropospheric Constituents Profiles from the Ground,” J. Geophys. Res. 103D, 3369–3380 (1998).

    Article  ADS  Google Scholar 

  32. A. M. South, I. M. Povey, and R. L. Jones, “Broadband Lidar Measurement of Tropospheric Water Vapor Profiles,” J. Geophys. Res. 103D, 31 191–31 202 (1998).

    ADS  Google Scholar 

  33. CCD Image Sensors in Deep-Ultraviolet (Springer, Berlin; Heidelberg, 2006).

  34. M. Douard, R. Bacis, P. Rambaldini, and J. P. Wolf, “Fourier-Transform Lidar,” Opt. Lett. 20, 2140–2142 (1995).

    Article  ADS  Google Scholar 

  35. G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, “Efficiency of Using Perspective White-Light Lidars for Sensing of Layered Cloudiness Microphysical Parameters. 1. Analytical Review,” Opt. Atmos. Okeana 22(7) (2009).

  36. P. Rairoux, H. Schillinger, and S. Niedermeier, “Remote Sensing of the Atmosphere Using Ultrashort Laser Pulses,” Appl. Phys. 71B, 573–580 (2000).

    Article  ADS  Google Scholar 

  37. H. Wille, M. Rodrigues, and J. Kasparian, “Teramobile: A Mobile Femtosecond-Terawatt Laser and Detection System,” Eur. Phys. J. Appl. Phys. 20, 183–190 (2002).

    Article  ADS  Google Scholar 

  38. L. Wöste, C. Wedekind, H. Wille, et al., “Femtosecond Atmospheric Lamp,” Laser Optoelektr. 2688E, 445–461 (1997).

    Google Scholar 

  39. J. Kasparian, M. Rodrigues, G. Mejean, et al., “White-Light Filaments for Atmospheric Analysis,” Science 301, 61–64 (2003).

    Article  ADS  Google Scholar 

  40. H. R. Schwarz, Numerische Mathematik (Stuttgart, 1988).

  41. B. R. Lienert, J. N. Porter, and S. K. Sharma, “Repetitive Genetic Inversion of Optical Extinction Data,” Appl. Opt. 40, 3476–3482 (2001).

    Article  ADS  Google Scholar 

  42. N. S. Mera, L. Elliott, and D. B. Ingham, “A Multi-Population Genetic Algorithm Approach for Solving Ill-Posed Problems,” Comput. Mech. 33, 254 (2004).

    MATH  Article  MathSciNet  Google Scholar 

  43. W. M. Irvine, “The “formation of Absorption Bands and the Distribution of Photon Optical Paths in Scattering Atmosphere,” Bull. Astron. Inst. Nether. 17, 266–279 (1964).

    ADS  Google Scholar 

  44. V. E. Zuev and M. V. Kabanov, Transfer of Optical Signals in the Earth’s Atmosphere (Sov. Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  45. G. A. Mikhailov, Optimization of the Monte Carlo Methods of Weight Functions (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  46. G. M. Krekov, “Method of Local Flux Estimation in the Problems of Broadband Laser Sensing,” Opt. Atmos. Okeana 22 (2009) (in press).

  47. A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Optical Radiation Transfer in the Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].

    Google Scholar 

  48. M. Dell’Aglio, A. Kholodnykh, R. Lassandro, and O. De Pascale, “Development of a Ti:Sapphire DIAL System for Pollutant Monitoring and Meteorological Applications,” Opt. Lasers Eng. 37, 233–244 (2002).

    Article  Google Scholar 

  49. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Krekov, M.M. Krekova, A.Ya. Sukhanov, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krekov, G.M., Krekova, M.M. & Sukhanov, A.Y. Estimation of the broadband lidar potential for remote sensing of the molecular atmosphere. Atmos Ocean Opt 22, 346–358 (2009). https://doi.org/10.1134/S1024856009030129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856009030129

Key words

  • lidar sensing
  • broadband emission
  • genetic algorithm