Skip to main content

Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency Raman lidar sensing: Part 1. Methods of optical parameter retrieval

Abstract

A technique intended for interpreting the data of multifrequency Raman lidar sensing is developed. An algorithm for separating aerosol layers with different scattering properties and the subsequent estimation of the average value of the lidar ratio and Angström parameter within the individual layers is proposed. The algorithm allows the error of retrieving the backscattering coefficient from daytime observations to be at least halved. To interpret the data of nighttime observations, a well-posed algorithm of numerical differentiation intended for determining the extinction coefficient based on the transformation of the range of allowable values which requires a solution of nonlinear equations is developed. An iterative procedure yielding an improved spatial resolution as compared with the conventional methods is envisaged for linearization. The methods can be successfully used for processing routine lidar measurements under conditions of a priori uncertainty.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. M. Winker, J. Pelon., and M. P. McCormick, “The CALIPSO mission: Spasebome lidar for observations of aerosols and clouds,” Proc. SPIE 4893, 1 (2003).

    Article  Google Scholar 

  2. 2.

    J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, EARLINET: a European Aerosol Research Lidar Network, Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2001), pp. 155–158.

  3. 3.

    T. Murayama, N. Sugimoto, I. Uno, et al., J. Geophis. Res. 106, 18 345 (2001).

    ADS  Google Scholar 

  4. 4.

    A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, L. L. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LINET—Lidar Network for Monitoring Aerosol and Ozone in CIS Regions,” in Reviewed and Revised Papers Presented at the 23d ILRC, Ed. by C. Nagasava and N. Sugimoto (Nara, Japan, 2006), pp. 671–672.

    Google Scholar 

  5. 5.

    C. Bockmann, U. Wandinger, A. Ansmann, et al., Appl. Opt. 43, 977 (2004).

    Article  ADS  Google Scholar 

  6. 6.

    G. Pappalardo, A. Amodeo, M. Pandolfi, et al., Appl. Opt. 43, 5370 (2004).

    Article  ADS  Google Scholar 

  7. 7.

    A. P. Chaikovsky, A. I. Bril, V. V. Barun, O. Dubovik, B. N. Holben, P. Goloub, and P. Sobolewski, “Methodology and sample results of retrieving aerosol parameters by combined multiwavelength lidar and Sun-sky scanning measurements,” Proc. SPIE 5397, 146 (2004).

    Article  ADS  Google Scholar 

  8. 8.

    F. G. Fernald, Appl. Opt. 23, 1609 (1984).

    Article  ADS  Google Scholar 

  9. 9.

    V. A. Kovalev, Appl. Opt. 32, 6053 (1993).

    Article  ADS  Google Scholar 

  10. 10.

    V. A. Kovalev and W. E. Eichinger, Elastic Lidar Theory, Practice, and Analysis Methods (John Wiley & Sons, Inc., New York, 2004).

    Book  Google Scholar 

  11. 11.

    V. E. Zuev and I. E. Naats, Inverse Problems of Lidar Sensing of the Atmosphere (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  12. 12.

    J. Ackermann, Appl. Opt. 36, 5134 (1997).

    Article  ADS  Google Scholar 

  13. 13.

    J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Buffon, Appl. Opt. 36, 3475 (1997).

    Article  ADS  Google Scholar 

  14. 14.

    A. Ångström, Tellus 16, 64 (1964).

    Article  Google Scholar 

  15. 15.

    A. Ansmann, U. Wandinger, M. Riebesell, et al., Appl. Opt. 31, 7113 (1992).

    Article  ADS  Google Scholar 

  16. 16.

    C. E. Junge, Air Chemistry and Radioactivity (Academic Press, New York, 1963).

    Google Scholar 

  17. 17.

    G. V. Rozenberg, Fiz. Atmosfer. i Okeana, No. 12, 1159 (1976).

  18. 18.

    F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1983).

    Google Scholar 

  19. 19.

    A. H. Omar, D.M. Winker, and J.-G. Won, “Aerosol models for the CALIPSO lidar inversion algorithms,” in Laser Radar Technology for Remote Sensing, Proc. SPIE, Ed. by Ch. Werner (2004), Vol. 5240, pp. 153–164.

  20. 20.

    A. H. Omar, J.-G. Won, D. M. Winker, et al., J. Geophys. Res. 110, D10S14 (2005).

    Article  Google Scholar 

  21. 21.

    I. Veselovskii, A. Kolgotin, V. Griaznov, et al., Appl. Opt. 43, 1180 (2004).

    Article  ADS  Google Scholar 

  22. 22.

    J. Ackerman, J. Atmos. Ocean. Techn. 15, 1043 (1998).

    Article  Google Scholar 

  23. 23.

    M. del Guasta, M. Morandi, L. Stefanutti, et al., J. Geophys. Res. D98, 18575 (1993).

    Article  Google Scholar 

  24. 24.

    www.earlinet.org (NA3 folder).

  25. 25.

    V. Shcherbakov, Appl. Opt. 46, 4879 (2007).

    Article  ADS  Google Scholar 

  26. 26.

    P. Pornsawad, C. Böckmann, C. Ritter, and M. Rafler, Appl. Opt. 47, 1649 (2008).

    Article  ADS  Google Scholar 

  27. 27.

    A. N. Tikhonov and V. Ya. Arsenin, Methods of solving ill-posed problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  28. 28.

    S. V. Samoilova, Yu. S. Balin, and A. D. Ershov, Fiz. Atmosfer. i Okeana 39(3), 395 (2003).

    Google Scholar 

  29. 29.

    G. I. Vasilenko, Theory of signal retrieval (Sovetskoe radio, Moscow, 1979) [in Russian].

    Google Scholar 

  30. 30.

    D. Müller, U. Wandinger, and A. Ansmann, Appl. Opt. 38, 2346 (1999).

    Article  ADS  Google Scholar 

  31. 31.

    C. Böckmann, I. Mironova, D. Müller, et al., J. Opt. Soc. Am. A22, 518 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Samoilova.

Additional information

Original Russian Text © S.V. Samoilova, Yu.S. Balin, G.P. Kokhanenko, I.E. Penner, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Samoilova, S.V., Balin, Y.S., Kokhanenko, G.P. et al. Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency Raman lidar sensing: Part 1. Methods of optical parameter retrieval. Atmos Ocean Opt 22, 302–315 (2009). https://doi.org/10.1134/S1024856009030075

Download citation

Key words

  • Raman lidar
  • aerosol
  • extinction coefficient
  • backscattering coefficient
  • lidar ratio
  • methods of optical parameter retrieval