Atmospheric and Oceanic Optics

, Volume 22, Issue 3, pp 257–263 | Cite as

Problem of centers of mass within the problem of the contour of spectral lines. 1. Existence of long trajectories

  • S. D. Tvorogov
Environmental Spectroscopy


The issue of the renunciation of the long-wave approximation for the centers of mass of molecules in the derivation of the formula for the absorption coefficient is discussed. In this case, in the formula for the absorption coefficient additional operators related to the field wave vector and to the coordinates of the center of mass appear. Their presence results in the appearance of relationships between the absorption coefficients and shifted frequencies; these relationships are called sum rules. Formulas for them in terms of commutators of additional operators with the Hamiltonian of the light-absorbing molecule have been derived. A “drift” hypothesis is presented, which describes the appearance of “long” trajectories going beyond the elementary volume.


Spectral Line Active Molecule Local Thermodynamic Equilibrium Spatial Dispersion Active Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Kontur spektral’noi linii i mezhmolekulyarnoe vzaimodeistvie (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  2. 2.
    S. D. Tvorogov and O. B. Rodimova, Spectral line shape. I. Kinetic equation for arbitrary frequency detunings, J. Chem. Phys. 102(22), 8736 (1995).CrossRefADSGoogle Scholar
  3. 3.
    M. V. Tonkov and N. N. Filippov, Influence of molecular interactions on the form of the vibrational-rotational bands in the spectra of gases: properties of the spectral function, Opt. Spektrosk. 54(5), 801 (1983) [Opt. Spectrosc. 54 (5), 475–478 (1983)].Google Scholar
  4. 4.
    V. I. Smirnov, Kurs vysshei matematiki. T. 3 (Nauka, Moscow, 1974), Part 1 [in Russian].Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  6. 6.
    D. I. Blokhintsev, Osnovy kvantovoi mekhaniki (Vysshaya shkola, Moscow, 1963) [in Russian].Google Scholar
  7. 7.
    C. B. Ludwig, C. E. Ferriso, W. Malkmus, and T. P. Boynton, High-temperature spectra of the pure-rotational band of, H2O, J. Quant. Spectrosc. Radiat. Transfer 5, 697–714 (1965).CrossRefADSGoogle Scholar
  8. 8.
    P. Varanasi, S. Chou, and S. S. Penner, Absorption coefficients for water vapor in the 600–1000 cm−1 region, J. Quant. Spectrosc. Radiat. Transfer 8, 1537–1541 (1968).CrossRefADSGoogle Scholar
  9. 9.
    L. I. Nesmelova, S. D. Tvorogov, and V. V. Fomin, Spektroskopiya kryl’ev linii (Nauka, Novosibirsk, 1977) [in Russian].Google Scholar
  10. 10.
    B. G. Ageev, Yu. N. Ponomarev, S. D. Tvorogov, and L. K. Chistyakova, The effect of laser radiation on absorption in the far wings of spectral lines, Dokl. Akad. Nauk SSSR 268(5), 1105–1107 (1983) [Sov. Phys. Dokl. 28, 159 (1983)].ADSGoogle Scholar
  11. 11.
    B. G. Ageev, E. P. Gordov, Yu. N. Ponomarev, and S. D. Tvorogov, A study of nonlinear spectroscopic effects during the interaction between CO2 laser emission and atmospheric gases, Izv. Akad. Nauk SSSR, Ser. Fiz. 49(3), 459–465 (1985).Google Scholar
  12. 12.
    B. G. Ageev, Yu. N. Ponomarev, and B. A. Tikhomirov, Nelineinaya optiko-akusticheskaya spektroskopiya molekulyarnykh gazov (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  13. 13.
    W. Heitler, The Quantum Theory of Radiation, (Dover, New York, 1954; Inostr. Literatura, Moscow, 1956).zbMATHGoogle Scholar
  14. 14.
    M. L. Goldberger and K. M. Watson, Collision Theory (John Wiley & Sons, New York, 1964; Mir, Moscow, 1967).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. D. Tvorogov
    • 1
  1. 1.Zuev Institute for Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations