Skip to main content

Polarization measurements of twilight sky: Studies of atmospheric aerosol from the troposphere to mesosphere


The results of polarization measurements of the twilight sky background are described. The measurements were carried out in the Crimean Laboratory of the Sternberg Astronomical Institute. The main regularities in the behavior of the twilight zenith sky polarization with the Sun zenith distance at wavelengths 513–525 nm, as well as the effects of the atmospheric aerosol on these dependences, are analyzed. The effects of enhanced aerosol scattering in the stratosphere in December 2006 and January 2008 are considered in detail.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. G. Fesenkov, On the structure of the atmosphere (a photometric analysis of the twilight), Publ. Main Russian Astrophys. Observ. 2, 7 (1923).

    Google Scholar 

  2. 2.

    G. V. Rozenberg, Twilight (Fizmatgiz, Moscow, 1963; Plenum Press, New York, 1966).

    Google Scholar 

  3. 3.

    V. G. Fesenkov, A polarization method for twilight research, Astron. Zh. 43, 198–203 (1966) [Sov. Astron. 10, 156–160 (1966)].

    ADS  Google Scholar 

  4. 4.

    O. S. Ugol’nikov, Twilight sky photometry and polarimetry: the problem of multiple scattering at the twilight time, Kosmicheskie Issledovaniya 37, 168–175 (1999) [Cosmic Research 37, 159 (1999)].

    ADS  Google Scholar 

  5. 5.

    O. S. Ugol’nikov and I. A. Maslov, Multicolor polarimetry of the twilight sky: the role of multiple light scattering as a function of wavelength, Kosmicheskie Issledovaniya 40, 242–251 (2002) [Cosmic Research 40, 224–232 (2002)].

    Google Scholar 

  6. 6.

    O. S. Ugol’nikov, O. V. Postylyakov, and I. A. Maslov, Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky, J. Quant. Spectrosc. Radiat. Transfer 88, 233–241 (2004).

    Article  ADS  Google Scholar 

  7. 7.

    A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, et al., CISLiNet lidar network for monitoring aerosol and ozone: methodology and instrumentation, Optika Atmosfery i Okeana 18, 1066–1072 (2005) [Atmospheric and Oceanic Optics 18, 958–964 (2005)].

    Google Scholar 

  8. 8.

    G. M. Krekov and S. G. Zvenigorodskii, Optical model of the middle atmosphere (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  9. 9.

    O. S. Ugol’nikov and I. A. Maslov, Detection of Leonids meteoric dust in the upper atmosphere by polarization measurements of the twilight sky, Planet. and Space Sci. 55, 1456–1463 (2007).

    Article  ADS  Google Scholar 

  10. 10.

    O. S. Ugol’nikov and I. A. Maslov, Polarization studies of contribution of aerosol scattering to the glow of twilight sky, Kosmicheskie Issledovaniya 43, 424–432 (2005) [Cosmic Research 43, 404–412 (2005)].

    Google Scholar 

  11. 11.

    V. N. Lebedinets, Aerosols in the upper atmosphere and cosmic dust (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  12. 12.

    M. H. Hitchman, M. McKay, and C. R. Trepte, A climatology of stratospheric aerosol, J. Geophys. Res. 99, 20689–20700 (1994).

    Article  ADS  Google Scholar 

  13. 13.

    T. Deshler, M. E. Hervig, D. J. Hofman, et al., Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments, J. Geophys. Res. 108, 4/1–4/13 (2003).

    Google Scholar 

  14. 14.

    P. B. Russell, J. M. Livingston, R. F. Pueschel, et al., Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses, J. Geophys. Res. 101, 18745–18763 (1996).

    Article  ADS  Google Scholar 

  15. 15.

    E. L. Makhotkina, I. N. Plakhina, A. B. Lukin, Some features of atmospheric turbidity change over the Russian territory in the last quarter of the 20th century, Meteorologiya i Gidrologiya, No. 1, 28–36 (2005) [Russian Meteorology and Hydrology, No. 1, 20–27 (2005)].

  16. 16.

    B. Wu and D. Lu, Monitoring the evolution of 1991 Pinatubo aerosols over Beijing by combining twilight observations with lidar detection, J. Geophys. Res. 98, 22995–23001 (1993).

    Article  ADS  Google Scholar 

  17. 17.

    S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbels, On the depletion of Antarctic ozone, Nature 321, 755–758 (1986).

    Article  ADS  Google Scholar 

  18. 18.

    C.-F. Enell, A. Steen, T. Wagner, et al., Occurrence of polar stratospheric clouds at Kiruna, Ann. Geophys. 17, 1457–1462 (1999).

    Article  ADS  Google Scholar 

  19. 19.

    O. S. Ugol’nikov and I. A. Maslov, Studies of the stratospheric aerosol layer based on polarization measurements of the twilight sky, Kosmicheskie Issledovaniya 47, in press (2009).

  20. 20.

    V. V. Zuev, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov A.V., Anomalous aerosol scattering in the atmosphere above Tomsk in autumn-winter of 2006–2007, Optika Atmosfery i Okeana 20, 524–530 (2007) [Atmospheric and Oceanic Optics 20, 480–485 (2007)].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. S. Ugol’nikov.

Additional information

Original Russian Text © O.S. Ugol’nikov, I.A. Maslov, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ugol’nikov, O.S., Maslov, I.A. Polarization measurements of twilight sky: Studies of atmospheric aerosol from the troposphere to mesosphere. Atmos Ocean Opt 22, 192–197 (2009).

Download citation


  • Atmospheric Aerosol
  • Cosmic Research
  • Single Scattering
  • Meteor Shower
  • Stratospheric Aerosol