Skip to main content
Log in

Modeling of the vertical structure of the nocturnal boundary layer over a rough surface

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of numerical simulation of some features of the structure of the nocturnal atmospheric boundary layer over the urbanized surface are presented. The mesoscale model includes improved nonlocal parametrization of turbulence developed based on the three-parameter model of turbulence. The turbulent Prandtl number appears to be stably dependent on the gradient Richardson number, and the vertical turbulent heat transport is contragradient. It was shown that the structural features of an “upside-down” boundary layer are detected in the stable atmospheric boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Mahrt and D. Vickers, “Contrasting Vertical Structures of Nocturnal Boundary layer Layers,” Bound.-Layer Meteor. 105, 351 (2002).

    Article  ADS  Google Scholar 

  2. B. B. Balsley, R. G. Frehlich, M. L. Jensen, and Y. Meiller, “High-Resolution in situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease,” J. Atmos. Sci. 63, 1291 (2006).

    Article  ADS  Google Scholar 

  3. R. M. Banta, Y. L. Pichugina, and W. A. Brewer, “Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet,” J. Atmos. Sci. 63, 2700 (2006).

    Article  ADS  Google Scholar 

  4. Y. Ohya Y., “Wind-Tunnel Study of Atmospheric Stable Boundary Layers over a Rough Surface,” Bound.-Layer Meteor. 98, 57 (2001).

    Article  ADS  Google Scholar 

  5. A. F. Kurbatskii and L. I. Kurbatskaya, “Three-Parametric Model of Turbulence for the Atmospheric Boundary Layer over an Urbanized Surface,” Izv. Ross. Akad. Nauk Ser. Fiz. Atm. Okeana 42(4), 476 (2006) [Izv. Atm. Ocean. Phys. 42, 439 (2006)].

    Google Scholar 

  6. T. R. Oke, Boundary Layer Climates (Gidrometeoizdat, Leningrad, 1982; Methuen, London, 1987).

    Google Scholar 

  7. A. F. Kurbatskii, “Computational Modeling of the Turbulent Penetrative Convection above the Urban Heat Island in a Stably Stratified Environment,” J. Appl. Meteor. 40, 1748 (2001).

    Article  ADS  Google Scholar 

  8. A. F. Kurbatskii and L. I. Kurbatskaya, “Modeling and Simulation of Thermal Air Circulation above an Urbanized Area,” in Proceedings of the 5th IASME/WSEAS International Conference in Heat Transfer, Thermal Engineering and Environment, Athens, Greece, 2007, p. 220.

    Google Scholar 

  9. A. F. Kurbatskii, “Countergradient Heat Transfer in the Atmospheric Boundary Layer over a Rough Surface,” Izv. Atm. Ocean. Phys. 44(2), 160 (2007).

    Article  Google Scholar 

  10. T. C. Vu, Y. Ashie, and T. Asaeda, “A k-ɛ Turbulence Model for the Atmospheric Boundary Layer Including Urban Canopy,” Bound.-Layer Meteorology, 102, 459 (2002).

    Article  ADS  Google Scholar 

  11. S.-M. Lee, W. Giori, M. Princevac, and H. J. S. Fernando, “Implementation of a Stable PBL Turbulence Parameterization for the Mesoscale Model MM5: Nocturnal Flow in Complex Terrain,” Bound.-Layer Meteorology, 119, 109 (2006).

    Article  ADS  Google Scholar 

  12. P. Monti, H. J. S. Fernando, M. Princevac, and W. C. Chan, “Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope,” J. Atmos. Sci. 59, 2513 (2002).

    Article  ADS  Google Scholar 

  13. A. F. Kurbatskii, “Contragradient Heat Transport in the Atmospheric Boundary Layer over a Rough Surface,” Izv. Ross. Akad. Nauk Ser. Fiz. Atm. Okeana, 44(2), 1 (2008) [Izv. Atm. Ocean. Phys.].

    Google Scholar 

  14. J. Cuxart and M. A. Jimenez, “Mixing Processes in a Nocturnal Low-Level Jet: An LES Study,” J. Atmos. Sci. 64, 1666 (2007).

    Article  ADS  Google Scholar 

  15. I. Esau and Q. Byrkjedal, “Application of Large-Eddy Simulation Database to Optimization of First Closures for Neutral and Stably Stratified Boundary Layers,” Bound.-Layer Meteor. 125, 207 (2007).

    Article  ADS  Google Scholar 

  16. R. J. Beare, M. K. MacVean, A. A. M. Holstag, J. Cuxart, I. Esau, J. C. Golaz, M. A. Jimenez, M. Khairoudinov, V. Kosovic, D. Lewellen, T. S. Lund, J. K. Lunduist, A. McCabe A., A. F. Moene, Y. Noh, S. Raash, and P. Sullivan, “An Intercomparison of Large Eddy Simulations of the Stable Boundary Layer,” Bound.-Layer Meteor. 118, 247 (2006).

    Article  ADS  Google Scholar 

  17. J. K. Lundquist and J. D. Mirocha, “Interaction of Nocturnal Low-Level Jets with Urban Geometries as Seen in Joint Urban 2003 Data,” J. Appl. Meteorol. Climatol. 47, 44 (2008).

    Article  ADS  Google Scholar 

  18. G. J. Steeneveld, B. J. H. van de Wiel, and A. A. V. Holstag, “Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99,” J. Atmos. Sci. 63, 920 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Kurbatskii, L.I. Kurbatskaya, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbatskii, A.F., Kurbatskaya, L.I. Modeling of the vertical structure of the nocturnal boundary layer over a rough surface. Atmos Ocean Opt 22, 173–179 (2009). https://doi.org/10.1134/S1024856009020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856009020067

Keywords

Navigation