Skip to main content

Role of gas and aerosol components of the atmosphere in the model of greenhouse explosion


Within the model of an equivalent grey atmosphere, the analysis of different mechanisms of negative feedback in the heat balance of the Earth’s surface, forming the stability of its current temperature regime and the only positive feedback mechanism which is able to lead to stability loss and transition to more hot condition, as on Venus, has been carried out. The role of the main greenhouse gases such as CO2, H2O, CH4, and cloudy aerosol in the positive feedback mechanism, as well as evaporation, photosynthesis, and cloud cover in the negative feedback mechanism have been characterized. The criticality of the heat balance in relation to the growth rate of the planetary albedo with an increase in the temperature of the Earth’s surface has been elicited. Above the Earth’s surface, the current state can be the only stationary and globally stable one in the temperature range of >288 K.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Lovelock, “Something nasty in the greenhouse,” Atmos. Sci. Lett. 5, 108–109 (2004).

    Article  ADS  Google Scholar 

  2. 2.

    V. I. Zakharov, K. G. Gribanov, V. E. Prokop’ev, and V. M. Shmelev, “Effects of the 8–13 μm Atmospheric Transmission Band on the Stability of the Earth’s Thermal State,” Atomic Energy, 1992, 1063–4258 (1992)[Print], 1573–8205, (Springer, New York, 2005) [Online].

    Google Scholar 

  3. 3.

    A. M. Makar’eva and V. G. Gorshkov, “Greenhouse effect and Problem of Stability of Average Global of the Earth’s surface,” Dokl. Akad. Nauk, 346(6), 810 (2001).

    Google Scholar 

  4. 4.

    V. G. Gorshkov and A. M. Makar’eva, “Nature of the Observed Climate Stability,” Geoekol. Inzh. Geol. Gidrogeol. Geokriol., No. 6, 483 (2006).

  5. 5.

    M. I. Budyko, The Past and Fiture of Climate (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  6. 6.

    K. McGuffie and A. Henderson-Sellers, A Climate Modelling Primer (Wiley & Sons, Chichester, 1997).

    Google Scholar 

  7. 7.

    V. I. Zakharov, K. G. Gribanov, M. V. Falko, et al., Molecular Atmospheric Transmittance Function in the Range of 2–400 μm and Earth Radiation Balance,” J. Quant. Spectrosc. Radiat. Transfer, 57(1), 1–10 (1997).

    Article  ADS  Google Scholar 

  8. 8.

    K. Ya. Kondrat’ev and N. I. Moskalenko, The Greenhouse Effect in Planet’s Atmosphere (VINITI, Moscow, 1985) [in Russian].

    Google Scholar 

  9. 9.

    A. P. Ingersoll, “The Runaway Greenhouse: A History of Water on Venus,” J. Atmos. Sci. 26, 1191–1198.

  10. 10.

    J. F. Kasting, “Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus,” Icarus, 74, 472 (1988).

    Article  ADS  Google Scholar 

  11. 11.

    V. I. Zakharov, V. M. Shmelev, and A. I. Nesterenko, Explosive Absorption of CO2 laser radiation 10.6 and 9.4 μm in the Atmosphere,” J. de Phys, IV 1(7), 775–781 (1991).

    Google Scholar 

  12. 12.

    O. I. Asiptsov, V. I. Zakharov, and K. G. Gribanov, “Explosive Absorption of CO2 laser radiation (10.6 μm) in Mixture of Atmospheric Air and Carbon Dioxide,” Opt. Atmos. Okeana, 13(11), 905–909 (2000).

    Google Scholar 

  13. 13.

    G. S. Golitsyn and A. S. Ginzburg, “Estimations of Possibility of “Rapid” Methane Global Warming,” Dokl. Akad. Nauk, 413(6), 816 (2007).

    Google Scholar 

  14. 14.

    Uglekislyi gaz v atmosfere, Ed. by Bakha, V, Kreina, A., Berde, A., and Longetto, A. (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  15. 15.

    L. T. Matveev, Standart Meteorology Course. Physics of Atmosphere. 2-e izd (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  16. 16.

    N. N. Moiseev, V. V. Aleksandrov, and A. M. Tarko, The Human Biosphere (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. 17.

    I. L. Karol’, An Introduction to Dynamics of the Earth’s Climate (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  18. 18.

    T. M. Lenton, “Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model,” Tellus, 52B, 1159 (2000).

    ADS  Google Scholar 

  19. 19.

    L. T. Matveev, Theory of General Circulation of Atmosphere and the Earth’s Climate (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  20. 20.

    S. Manabe and R. F. Strikler, Thermal Equilibrium in Atmosphere with Account of Convection,” in Theory of Climate (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  21. 21.

    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG / ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer, 68(4), 435 (2001).

    Article  ADS  Google Scholar 

  22. 22.

    L. S. Rothman, et al., ”The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer, 82, 5–44 (2003).

    Article  ADS  Google Scholar 

  23. 23.

    WCRP, 1983: Experts meeting on aerosols and their climate effects, Eds. A. Deepak and H. E. Gerber, WCP-55.

  24. 24.

    G. D. Nicholls, In Mantles of the Earth and Terrestrial Planets (Interscience, New York, 1967).

    Google Scholar 

  25. 25.

    Yu. A. Izrael’, I. I. Borzenkova, and D. A. Severov, “Role of Stratospheric Aerosols in the Modern Climate preserve,” Meteorologia I Gidrologia, No. 1 (2007).

Download references

Author information



Corresponding author

Correspondence to V. I. Zakharov.

Additional information

Original Russian Text © V.I. Zakharov, K.G. Gribanov, S.A. Beresnev, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakharov, V.I., Gribanov, K.G. & Beresnev, S.A. Role of gas and aerosol components of the atmosphere in the model of greenhouse explosion. Atmos Ocean Opt 22, 162–172 (2009).

Download citation


  • Heat Balance
  • Optical Thickness
  • Greenhouse Effect
  • Methane Hydrate
  • Surface Temperature Increase