Skip to main content

Asymptotic estimates of threshold power for laser excitation of thermal instability for high-Q resonant modes in water aerosol droplets


We have calculated the threshold powers for the thermal oscillatory instability as functions of the diffraction parameter and the laser pump wavelength for high-Q water aerosol droplets. The integrated overlap coefficients of the thermal and electromagnetic modes have been estimated by asymptotic methods. We have found the threshold power of the thermal instability to be comparable in order of magnitude to that of the stimulated Raman scattering and the thermal instability in spherical resonators of fused silica, 0.1 mW at the pump wavelength λ p = 0.532 μm for a droplet radius of 5.3 μm. Measurements and estimations of the threshold power are of importance in applications as an additional method for remote temperature measurement and control of the evaporation-condensation rate for a droplet containing photoactive impurities, dyes, and polymer nanoparticles, based on the eigenfrequency shift in the stimulated Raman scattering and lasing spectra.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. A. Zemlyanov and Y. E. Geints, J. Opt. Soc. Amer. B 20, 2492 (2003).

    Article  ADS  Google Scholar 

  2. 2.

    S. Judith, S.-X. Qian, and R. Chang, Opt. Lett. 10, 37 (1985).

    Article  ADS  Google Scholar 

  3. 3.

    G. Chen, W. P. Acker, R. K. Chang, and S. C. Hill, Opt. Lett. 16, 117 (1991).

    Article  ADS  Google Scholar 

  4. 4.

    J.-Z. Zhang, G. Chen, and R. K. Chang, J. Opt. Soc. Amer. B 7, 108 (1990).

    Article  ADS  Google Scholar 

  5. 5.

    H.-M. Tzang, K. F. Wall, M. B. Long, and R. K. Chang, Opt. Lett. 9, 499 (1984).

    Article  ADS  Google Scholar 

  6. 6.

    G. Kurizki and A. Nitzan, Phys. Rev. A 38, 267 (1988).

    Article  ADS  Google Scholar 

  7. 7.

    D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, Phys. Rev. A 53, 3565 (1996).

    Article  ADS  Google Scholar 

  8. 8.

    H.-B. Lin, A. L. Huston, B. J. Justus, and A. J. Campillo, Opt. Lett. 11, 614 (1986).

    Article  ADS  Google Scholar 

  9. 9.

    G. V. Belokopytov, Vestn. Mosk. Gos. Univ., Ser. Fiz. Astron., no. 3, 11 (1997).

  10. 10.

    S. Arnold, K. M. Leung, and A. Pluchino, Opt. Lett. 11, 800 (1986).

    Article  ADS  Google Scholar 

  11. 11.

    J. Popp, M. Lankers, K. Schaschek, et al., Appl. Opt. 34, no. 13, 2380 (1995).

    Article  ADS  Google Scholar 

  12. 12.

    A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, J. Opt. Soc. Amer. B 22, 459 (2005).

    Article  ADS  Google Scholar 

  13. 13.

    V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Rep. A 137, 393 (1989).

    ADS  Google Scholar 

  14. 14.

    G. V. Belokopytov and M. V. Zhuravlev, Izv. VUZov, Radiofiz. XLIII, no. 2, 162 (2000).

    Google Scholar 

  15. 15.

    G. V. Belokopytov and N. P. Pushechkin, Pis’ma Zh. Tekh. Fiz. 17,Issue 22, 71 (1991).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. V. Zhuravlev.

Additional information

Original Russian Text © M.V. Zhuravlev, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuravlev, M.V. Asymptotic estimates of threshold power for laser excitation of thermal instability for high-Q resonant modes in water aerosol droplets. Atmos Ocean Opt 22, 158–161 (2009).

Download citation


  • Stimulate Raman Scattering
  • Thermal Instability
  • Pump Wavelength
  • Threshold Power
  • Droplet Temperature