Skip to main content

A trend of the CO2 concentration in tree rings and the atmospheric CO2


Several suppositions about the interpretation of the CO2 content measurements in the rings of old discs of tree stems are put forward. In particular, it is supposed that the trend in the annual CO2 content detected in the rings is related to the rising concentration of the atmospheric CO2.

This is a preview of subscription content, access via your institution.


  1. 1.

    B. L. Gartner, J. R. Moore, and B. A. Gardiner, “Gas in Stems: Abundance and Potential Consequences for Tree Biomechanics,” Tree Physiol. 24(11), 1239 (2004).

    Google Scholar 

  2. 2.

    R. O. Teskey and M. A. McGuire, “Carbon Dioxide Transport in Xylem Causes Errors in Estimation of Rates of Respiration in Stems and Branches of Trees,” Plant, Cell, Environ. 25(11), 1571 (2002).

    Article  Google Scholar 

  3. 3.

    M. A. McGuire and R. O. Teskey, “Microelectrode Technique for in situ Measurement of Carbon Dioxide Concentration in Xylem Sap of Trees,” Tree Physiol. 22(11), 807 (2002).

    Google Scholar 

  4. 4.

    V. D. Roshchina, “Internal Tree Gases and Their Role in Regulation of Metabolic Processes,” in Problems Woody Plant Physiology and Biochemistry (ILiD SO AN SSSR, Krasnoyarsk, 1974) [in Russian].

    Google Scholar 

  5. 5.

    M. L. Pruyn, B. L. Gartner, and M. E. Harmon, “Within-Stem Variation of Respiration in Pseudotsuga menziesii (Douglas-Fir) Trees,” New Phytol. 154(2), 359 (2002).

    Article  Google Scholar 

  6. 6.

    P. E. Levy, P. Meir, S. J. Allen, and P. G. Jarvis, “The Effect of Aqueous Transport of CO2 in Xylem Sap on Gas Exchange in Woody Plants,” Tree Physiol. 19(1), 53–58 (1999).

    Google Scholar 

  7. 7.

    R. O. Teskey, A. Saeyn, K. Steppe, and M. A. McGuire, “Origin, Fate and Significance of CO2 in Tree Stems,” New Phytol. 177(1), 17–32 (2008).

    Google Scholar 

  8. 8.

    B. G. Ageev, S. L. Bondarenko, V. V. Zuev, D. A. Savchuk, and V. A. Sapozhnikova, “New Dendrochronolog ical Parameter as a Result of Optical-Acoustic Measurements of CO2 Concentrations in Tree Rings,” Opt. Atmos. Okeana 19(5), 465–468 (2006).

    Google Scholar 

  9. 9.

    E. M. Galimov, Nature of Isotope Biological Fractionation (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  10. 10.

    R. O. Teskey and M. A. McGuire, “Measurement of Stem Respiration of Sycamore (Platanus occidentalis L.) Trees Involves Internal and External Fluxes of CO2 and Possible Transport of CO2 from Roots,” Plant, Cell Environ. 30(5), 570–579 (2007).

    Article  Google Scholar 

  11. 11.

    T. Bettger, “Annual Tree Rings as an Archive of Climate and Environmental Changes: Isotopic-Dendrological Works in Germany (Central Europe),” in New Methods of Dendroecology (Sochava Inst. Geogr. SO RAN, Irkutsk, 2007) [in Russian].

    Google Scholar 

  12. 12.

    V. I. Voronin and A. A. Ivlev, “Isotopic-Dendrological Indications of Recent Changes in Terrestrial Climate,” in New Methods of Dendroecology (Sochava Inst. Geogr. SO RAN, Irkutsk, 2007) [in Russian].

    Google Scholar 

  13. 13.

    S. Hättenschwiler, F. Miglietta, A. Raschi, and S. Körner, “Thirty Years of in situ Tree Growth under Elevated CO2: A Model for Future Forest Responses?,” Global Change Biol. 3(5) 436–471 (1997).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to B. G. Ageev.

Additional information

Original Russian Text © B.G. Ageev, Yu.N. Ponomarev, V.A. Sapozhnikova, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ageev, B.G., Ponomarev, Y.N. & Sapozhnikova, V.A. A trend of the CO2 concentration in tree rings and the atmospheric CO2 . Atmos Ocean Opt 22, 128–134 (2009).

Download citation


  • Tree Ring
  • Ring Width
  • Oceanic Optic
  • Siberian Stone
  • Federal State Unitary Enterprise