Skip to main content

Arctic oscillation excitation by torsional oscillations

Abstract

The mechanism of the Arctic oscillation (AO) occurrence is yet to be explained. The work considers the hypothesis of external excitation of the AO by zonal wind variations over the range of 15–20 days. Such variations often occurring in the troposphere near the Pole propagate towards the low latitudes and the stratosphere induce the variations of the AO index and affect the dynamics of the stratospheric Polar vortex. Largescale disturbances with the structure similar to that of the long barotropic Rossby waves are responsible for zonal-mean wind variations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. W. J. Thompson, S. Lee, and M. P. Baldwin, “Atmospheric Processes Governing the Northern Hemisphere Annular Mode, North Atlantic Oscillation, The North Atlantic Oscillation: Climate Significance and Environmental Impact,” Geophys. Monogr. Am. Geophys. Union 134, 1–31 (2002).

    Google Scholar 

  2. 2.

    V. I. Mordvinov, A. S. Ivanova, and E. V. Devyatova, “Arctic Oscillation and Troposhere-Stratosphere Coupling,” Sol.-Terr. Phys., No. 10, 106–112 (2007).

  3. 3.

    H. L. Tanaka and H. Tokinaga, “Baroclinic Instability in High Latitudes Induced by Polar Vortex: A Connection to the Arctic Oscillation,” J. Atmos. Sci. 59, 69–82 (2002).

    Article  ADS  Google Scholar 

  4. 4.

    V. P. Dymnikov and A. N. Filatov, Stability of Large-Scale Atmospheric Processes (Otdel Vychislit. Mat. Akad. Nauk SSSR, Moscow, 1988) [in Russian].

    Google Scholar 

  5. 5.

    S. Manabe and B. G. Hunt, “Experiments with a Stratospheric General Circulation Model. 1. Radiative and Dynamic Aspects,” Mon. Weather Rev. 96, 477 (1968).

    Article  ADS  Google Scholar 

  6. 6.

    S. E. Strahan and J. D. Mahlman, “Evaluation of the SKYHI General Circulation Model Using Aircraft N2O Measurements. 1. Polar Winter Stratospheric Meteorology and Tracer Morphology,” J. Geophys. Res. 99D, 10305–10318 (1994).

    Article  ADS  Google Scholar 

  7. 7.

    E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP / NCAR 40-Year Reanalysis Project,” Bull. Am. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  8. 8.

    M. S. Longuet-Higgins, “The Eigenfunctions of Laplace’s Tidal Equation over a Sphere,” Phil. Trans. R. Soc. London 262, 511–607 (1968).

    MATH  Article  ADS  MathSciNet  Google Scholar 

  9. 9.

    A. I. Pogorel’tsev, “Generation of Normal Atmospheric Modes by Stratospheric Vacillations,” Izv. Akad Nauk, Fiz. Atmos. Okeana 43(4), 423–435 (2007).

    MathSciNet  Google Scholar 

  10. 10.

    M. P. Baldwin and T. J. Dunkerton, “Downward Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere,” J. Geophys. Res. 104(30), 937–946 (1999).

    Google Scholar 

  11. 11.

    M. P. Baldwin, D. B. Stephenson, D. W. J. Thompson, et al., “Stratospheric Memory and Skill of Extended-Range Weather Forecasts,” Science 301, 636–639 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Mordvinov.

Additional information

Original Russian Text © V.I. Mordvinov, A.S. Ivanova, E.V. Devyatova, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mordvinov, V.I., Ivanova, A.S. & Devyatova, E.V. Arctic oscillation excitation by torsional oscillations. Atmos Ocean Opt 22, 94–101 (2009). https://doi.org/10.1134/S1024856009010138

Download citation

Keywords

  • Vortex
  • Planetary Wave
  • Polar Vortex
  • Torsional Oscillation
  • Arctic Oscillation