Skip to main content

Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 2. Variability range and sensitivity to the input parameters

Abstract

The results of the simulation of aerosol radiative forcing under typical summer conditions in Siberia (weakly turbid atmosphere, green vegetation canopy) are presented. The factors determining the aerosol radiative effect at the top and the bottom of the atmosphere (the aerosol optical depth of the atmosphere, the single scattering albedo, the asymmetry factor of the aerosol scattering aerosol optical depth, and the underlying surface albedo) are analyzed. It is shown that the uncertainty of the numerical estimates of radiative forcing due to the inaccuracy of specification the input parameters of the atmosphere in the typical error range amounts to about 20 and 70% at the underlying surface level and the top of the atmosphere, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. Part 1: Method of Calculation and Choice of Input Parameters,” Opt. Atmos Okeana 22(1), 63–73 (2009).

    Article  Google Scholar 

  2. 2.

    A Preliminary Cloudless Standard Atmosphere for Radiation Computation, (WMO/TD No. 24, 1986).

  3. 3.

    S. J. Hook, http://speclib.jpl.nasa.gov.

  4. 4.

    R. Halthore and S. Schwartz, “Comparison of Model-Estimated and Measured Diffuse Downward Irradiance at Surface in Cloud-Free Skies,” J. Geophys. Res. 105D, 20 165–20 177 (2000).

    ADS  Google Scholar 

  5. 5.

    J. Henzing, W. Knap, P. Stammes, et al., “Effect of Aerosols on Downward Shortwave Irradiances at the Surface: Measurements versus Calculations with MODTAN4.1,” J. Geophys. Res. 109D, D004142 (2004).

  6. 6.

    D. J. Sheridan and J. A. Ogren, “Observations of the Vertical and Regional Variability of Aerosol Optical Properties over Central and Eastern North America,” J. Geophys. Res. 104D(14), 16 793–16 805 (1999).

    ADS  Google Scholar 

  7. 7.

    J.-G. Won, S.-N. Yoon, S.-W. Kim, et al., “Estimation of Direct Radiative Forcing of Asian Dust Aerosols with Sun/Sky Radiometer and Lidar Measurements at Gosan Korea,” J. Meteorol. Soc. Jap. 82(1), 115–130 (2004).

    Article  Google Scholar 

  8. 8.

    T. A. Tarasova, I. A. Gorchakova, M. A. Sviridenkov, P. P. Anikin, and E. V. Romashova, “Estimation of Fog Aerosol Radiative Forcing according to the Radiation Measurements at IFA RAN Zvenigorod Station in Summer 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40(4), 514–524 (2002).

    Google Scholar 

  9. 9.

    I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of Aerosol on Radiation Regime of a Clear Atmosphere according to the Zvenigorod Aerosol-Cloud Radiation Experiments,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(4), 496–510 (2005).

    Google Scholar 

  10. 10.

    W. Collins, P. Rasch, B. Eaton, et al., “Simulation of Aerosol Distributions and Radiative Forcing for INDOEX: Regional Climate Impacts,” J. Geophys. Res. 107D, 8028 (2002).

    Article  ADS  Google Scholar 

  11. 11.

    M. Zhou, H. Yu, R. Dickinson, et al., “A Normalized Description of the Direct Effect of Key Aerosol Types on Solar Radiation as Estimated from AERONET Aerosols and MODIS Albedo,” J. Geophys. Res. 110, D19202 (2005).

    Google Scholar 

  12. 12.

    F. Li, A. M. Vogelmann, and V. Ramanathan, “Dust Aerosol Radiative Forcing Measured from Space over the Western Africa,” J. Climate 17(13), 2558–2571 (2004).

    Article  ADS  Google Scholar 

  13. 13.

    O. Dubovik, B. Holben, T. Eck, et al., “Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

    Article  ADS  Google Scholar 

  14. 14.

    A. Strawa, R. Castaneda, T. Owano, and D. Baer, “The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques,” J. Atmos. Ocean. Technol. 20, 454–465 (2003).

    Article  ADS  Google Scholar 

  15. 15.

    B. M. Herman, R. S. Browning, and J. J. De Luisi, “Determination of the Effective Imaginary Term of the Complex Refractive Index of Atmospheric Dust by Remote Sensing: The Diffuse-Direct Radiation Method,” J. Atmos. Sci. 32(5), 918–925 (1975).

    Article  ADS  Google Scholar 

  16. 16.

    E. Kassianov, C. Flynn, T. Ackerman, and J. Barnard, “Aerosol Single-Scattering Albedo and Asymmetry Parameter from MFRSRE Observations during the ARM Aerosol IOP 2003,” Atmos. Chem. Phys. 7, 3341–3351 (2007).

    Article  Google Scholar 

  17. 17.

    H. Yu, Y. Kaufman, M. Chin, G. Feingold, et al., “A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing,” Atmos. Chem. Phys. 6, 613–666 (2006).

    Google Scholar 

  18. 18.

    O. Boucher, “On Aerosol Direct Shortwave Forcing and the Henyey-Greenstein Phase Function,” J. Atmos. Sci. 55(1), 128–134 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  19. 19.

    O. Dubovik, A. Sinyuk, T. Lapyonok, et al., “Application of Spheroid Models to Account for Aerosol Particle Nonsphericity in Remote Sensing of Desert Dust,” J. Geophys. Res. 111, D11208 (2006).

    Google Scholar 

  20. 20.

    M. Fiebig and J. Orgen, “Retrieval and Climatology of the Aerosol Asymmetry Parameter in NOAA Aerosol Monitoring Network,” J. Geophys. Res. 111, D05S08 (2006).

    Google Scholar 

  21. 21.

    B. Schmid, J. Michaslky, D. Slater, et al., “Comparison of Columnar Water Vapor Measurements during the Fall 1997 ARM Intensive Observation Period: Solar Transmittance Methods,” Appl. Opt. 40, 1886–1896 (2001).

    Article  ADS  Google Scholar 

  22. 22.

    R. Halthore, T. Eck, B. Holben, and B. Markhan, “Sun Photometric Measurements of Atmospheric Water Vapor Column Abundance in the 940-nm Band,” J. Geophys. Res. 102D, 4343–4352 (1997).

    Article  ADS  Google Scholar 

  23. 23.

    D. M. Kabanov and S. M. Sakerin, “Results of Studying the Total Moisture Content of the Atmosphere Using the Method of Optical Hygrometry. Part 1. Analysis of the Method and Calibration Results,” Opt. Atmos. Okeana 8(6), 852–860 (1995).

    Google Scholar 

  24. 24.

    H. Yu, R. Dickinson, M. Chin, et al., “Direct Radiative Effect of Aerosols as Determined from Combination of MODIS Retrievals and GOCART Simulations, J. Geophys. Res. 109, D03206 (2004).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. B. Zhuravleva.

Additional information

Original Russian Text © T.B. Zhuravleva, S.M. Sakerin, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuravleva, T.B., Sakerin, S.M. Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 2. Variability range and sensitivity to the input parameters. Atmos Ocean Opt 22, 74–83 (2009). https://doi.org/10.1134/S1024856009010114

Download citation

Keywords

  • Aerosol Optical Depth
  • Oceanic Optic
  • Solar Zenith Angle
  • Dust Aerosol
  • Asymmetry Factor