Skip to main content

Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters

Abstract

We present a method for calculating the broadband solar radiation fluxes under clear sky conditions based on the combination of a statistic simulation algorithm and a version of the k-distribution method. An approach to the choice of the input parameters needed for calculating the fluxes and the direct component of the radiative aerosol forcing at the top and the bottom of the atmosphere is described. The approach is based on the combination of the results of multiyear sun photometer measurements of the aerosol optical thickness on the range from 0.37 to 4.0 μm and the atmospheric moisture content in the region of Tomsk with the available models of aerosols, gas components of the atmosphere, and underlying surfaces for determining the deficient parameters, such as the single scattering albedo, the scattering indicatrix of aerosol particles, and the surface albedo.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Ya. Kondrat’ev, “Aerosol as a Climate Forming Factor of the Atmosphere. 2. Direct and Indirect Climate Forcing,” Opt. Atmos. Okeana 15(4), 301–320 (2002).

    Google Scholar 

  2. 2.

    K. Ya. Kondrat’ev, “Aerosol and Climate: Present-Day State and Development Perspectives. 3. Aerosol Radiative Excitation,” Opt. Atmos. Okeana 19(7), 565–575 (2006).

    Google Scholar 

  3. 3.

    J. Haywood and O. Boucher, “Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review,” Rev. Geophys. 38(4), 513–543 (2000).

    Article  ADS  Google Scholar 

  4. 4.

    S. Twomey, “The Influence of Pollution on the Shortwave Albedo of Clouds,” J. Atmos. Sci. 34(7), 1149–1152 (1977).

    Article  ADS  Google Scholar 

  5. 5.

    B. Albrecht, “Aerosols, Cloud Microphysics, and Fractional Cloudiness,” Science 245(4923), 1227–1230 (1989).

    Article  ADS  Google Scholar 

  6. 6.

    B. Johnson, K. Shine, and P. Forster, “The Semi-Direct Aerosol Effect: Impact of Absorbing Aerosols on Marine Stratocumulus,” Quart. J. R. Meteorol. Soc. 130(599), 1407–1422 (2004).

    Article  ADS  Google Scholar 

  7. 7.

    T. A. Tarasova, I. A. Gorchakova, M. A. Sviridenkov, P. P. Anikin, and E. V. Romashova, “Estimation of Fog Aerosol Radiative Forcing According to the Radiation Measurements at IFA RAN Zvenigorod Station in Summer 2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40(4), 514–524 (2004).

    Google Scholar 

  8. 8.

    I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of Aerosol on Radiation Regime of a Clear Atmosphere according to the Zvenigorod Aerosol-Cloud Radiation Experiments,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41(4), 496–510 (2005).

    Google Scholar 

  9. 9.

    M. Zhou, H. Yu, R. Dickinson, et al., “A Normalized Description of the Direct Effect of Key Aerosol Types on Solar Radiation as Estimated from AERONET Aerosols and MODIS Albedo,” J. Geophys. Res. 110, D19202 (2005).

    Google Scholar 

  10. 10.

    H. Yu, Y. Kaufman, M. Chin, G. Feingold, et al., “A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing,” Atmos. Chem. Phys. 6, 613–666 (2006).

    Article  Google Scholar 

  11. 11.

    H. Yu, R. Dickinson, M. Chin, Y. Kaufman, et al., “The Direct Radiative Effect of Aerosols as Determined from Combination of MODIS Retrievals and GOCART Simulations, J. Geophys. Res. 109, D03206 (2004).

    Google Scholar 

  12. 12.

    S. M. Sakerin and D. M. Kabanov, “Spectral Dependence of the Aerosol Optical Thickness of the Atmosphere in the 0.37–4 μm Spectral Region,” Opt. Atmos. Okeana 20(2), 156–164 (2007).

    Google Scholar 

  13. 13.

    A. Slingo, “A GCM Parameterization for Shortwave Radiative Properties of Water Clouds,” J. Atmos. Sci. 46(10), 1419–1427 (1989).

    Article  ADS  Google Scholar 

  14. 14.

    T. B. Zhuravleva, “Modeling Solar Emission Transfer under Different Atmospheric Conditions. Part I. A Deterministic Atmosphere,” Opt. Atmos. Okeana 21(2), 99–114 (2008).

    Google Scholar 

  15. 15.

    T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of the Series of Exponents during Modeling Broadband Fluxes of Solar Radiation in the Eart’s Atmosphere,” Opt. Atmos. Okeana 20(9), 799–804 (2007).

    Google Scholar 

  16. 16.

    S. J. Hook, http://speclib.jpl.nasa.gov.

  17. 17.

    Albedo and Angular Reflection Characteristics of the Underlying Surface and Clouds, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  18. 18.

    A. A. Mitsel’ and K. M. Firsov, “Development of Molecular Absorption Models in the Problems of Emission Transfer in the Earth’s Atmosphere,” Opt. Atmos. Okeana 13(2), 179–197 (2000).

    Google Scholar 

  19. 19.

    K. M. Firsov, A. A. Mitsel, Yu. N. Ponomarev, and I. V. Ptashnik, “Parametrization of Transmittance for Application in Atmospheric Optics,” J. Quant. Spectrosc. Radiat. Transfer 59(3–5), 203–213 (1998).

    Article  ADS  Google Scholar 

  20. 20.

    A. A. Lacis and V. Oinas, “A Description of the Correlated k Distribution Method for Modelling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres,” J. Geophys. Res. 96D, 9027–9063 (1991).

    Article  ADS  Google Scholar 

  21. 21.

    R. Goody, R. West, L. Chen, and D. Crisp, “The Correlated-k Method for Radiation Calculations in Nonhomogeneous Atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 42(6), 539–550 (1989).

    Article  ADS  Google Scholar 

  22. 22.

    K. M. Firsov and T. Yu. Chesnokova, “New Method for Considering the Overlap of Atmospheric Gas Absorption Bands during Transfer Equation Parametrization,” Opt. Atmos. Okeana 11(4), 410–415 (1998).

    Google Scholar 

  23. 23.

    K. M. Firsov, T. Yu. Chesnokova, V. V. Belov, et al., “The Series of Exponents in Calculations of Radiation Transfer in Spatially Inhomogeneous Mediums Using the Monte Carlo Method,” Vychisl. Tekhn. 7(5), 77–87 (2002).

    MATH  MathSciNet  Google Scholar 

  24. 24.

    T. B. Zhuravleva and K. M. Firsov, “Algorithms for Calculating Spectral Fluxes of Solar Radiation in Cloudy and Clear Atmospheres,” Opt. Atmos. Okeana 17(11), 903–911 (2004).

    Google Scholar 

  25. 25.

    Y. Fouquart, B. Bonnel, and V. Ramaswamy, “The Intercomping Shortwave Radiation Codes for Climate Studies,” J. Geophys. Res. 96D, 8955–8968 (1991).

    Article  ADS  Google Scholar 

  26. 26.

    B. A. Fomin and Yu. V. Gershanov, Preprint IAE 5990/1 (1996).

  27. 27.

    G. Anderson, S. Clough, F. Kneizys, et al., AFGL Atmospheric Constituent Profiles (0–120 km) (AFGL-TR-86-0110, 1986).

  28. 28.

    F. X. Kneizys, D. S. Robertson, L. W. Abreu, et al., The MODTRAN 7 Model (Hansom AFB, 1996).

  29. 29.

    I. V. Ptashnik and K. P. Shain, “Effect of Spectroscopic Information Renovation on the Calculation of Solar Irradiance in the Atmosphere,” Opt. Atmos. Okeana 16(3), 276–281 (2003).

    Google Scholar 

  30. 30.

    A Preliminary Cloudless Standard Atmosphere for Radiation Computation, WCP-112, WMO/TD No. 24, 1986.

  31. 31.

    M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).

    Article  ADS  Google Scholar 

  32. 32.

    O. T. Dubovik and M. A. King, “Flexible Inversion Algorithm for Retrieval Aerosol Optical Properties from Sun and sky Radiance Measurements,” J. Geophys. Res. 105D(16), 20 673–20 696 (2000).

    ADS  Google Scholar 

  33. 33.

    M. A. Sviridenkov, “Determining Atmospheric Aerosol Characteristics Based on Spectral Measurements of Transparence and Small-Angle Scattering,” Opt. Atmos. Okeana 14(12), 1115–1118 (2001).

    Google Scholar 

  34. 34.

    O. Dubovik, A. Smirnov, B. Holben, et al., “Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robostic Network (AERONET) Sun and Sky Radiance Measurements,” J. Geophys. Res. 105D(8), 9791–9806 (2000).

    Article  ADS  Google Scholar 

  35. 35.

    T. B. Zhuravleva, V. E. Pavlov, V. V. Pashnev, and A. S. Shestukhin, “Integral and Difference Methods for the Determination of the Aerosol Scattering Optical Depth from Sky Brightness Data,” Quant. Spectrosc. Radiat. Transfer 88(1–3), 191–209 (2004).

    Article  ADS  Google Scholar 

  36. 36.

    M. A. Sviridenkov, P. P. Anikin, T. B. Zhuravleva, and I. M. Nasrtdinov, “Parametrization of the Ratio of the Scattered and Direct Solar Radiation Fluxes and Its Usage for Estimating Single-Scatter Albedo Using MFRSR-Type Devices,” Opt. Atmos. Okeana 21(4), 333–338 (2008).

    Google Scholar 

  37. 37.

    E. Andrews, P. Sheridan, J. Orgen, and R. Ferrare, “In situ Aerosol Profiles over the Southern Great Plains Cloud and Radiation Test Bed Site:, 1. Aerosol Optical Properties,” J. Geophys. Res. 109, D06208 (2004).

    Google Scholar 

  38. 38.

    P. Sheridan, D. Delene, and J. Orgen, “Four Years of Continuous Surface Aerosol Measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed Site,” J. Geophys. Res. 106D(18), 20 735–20 747 (2001).

    ADS  Google Scholar 

  39. 39.

    V. S. Kozlov, A. B. Tikhomirov, M. V. Panchenko, and B. A. Tikhomirov, “Equipment and Method for Estimating Single-Scatter Albedo for Local Air Volumes,” in Proceedings of the International Symposium of CIS Countries “Atmospheric Radiation” (MSAR-2), St. Petersburg, 2002, pp. 63–64.

  40. 40.

    R. Halthore and S. Schwartz, “Comparison of Model- Estimated and Measured Diffuse Downward Irradiance at Surface in Cloud-Free Skies,” J. Geophys. Res. 105D(15), 20165–20177 (2000).

    Article  ADS  Google Scholar 

  41. 41.

    J. Henzing, W. Knap, P. Stammes, et al., “Effect of Aerosols on Downward Shortwave Irradiances at the Surface: Measurements versus Calculations with MODTAN4.1,” J. Geophys. Res. 109, D14204 (2004).

    Google Scholar 

  42. 42.

    J.-G. Won, S.-N. Yoon, S.-W. Kim, et al., “Estimation of Direct Radiative Forcing of Asian Dust Aerosols with Sun/Sky Radiometer and Lidar Measurements at Gosan Korea,” J. Meteorol. Soc. Jap. 82(1), 115–130 (2004).

    Article  Google Scholar 

  43. 43.

    Tomsk Climate, Ed. by S.D. Kashinskii, L.I. Trifonova, and Ts.A. Shver (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  44. 44.

    B. D. Belan, T. M. Rasskazchikova, and T. K. Sklyadneva, “Tomsk Synoptic Regime for 1993–2004,” Opt. Atmos. Okeana 18(10), 887–892 (2005).

    Google Scholar 

  45. 45.

    T. B. Zhuravleva, T. M. Rasskazchikova, T. K. Sklyadneva, and S. V. Smirnov, “Statistics of Clouds over Tomsk: Data of Ground-Based Measurements in 1993–2004,” Opt. Atmos. Okeana 19(10), 880–887 (2006).

    Google Scholar 

  46. 46.

    S. V. Afonin, V. V. Belov, M. V. Panchenko, et al., “Correlation Analysis of Spatial Fields of Aerosol Optical Thickness Based on the MODIS Satellite Data,” Opt. Atmos. Okeana (in press).

  47. 47.

    S. M. Sakerin, T. B. Zhuravleva, D. M. Kabanov, et al., “Solar Photometry in the Problems of Monitoring Radioactive Components of the Atmosphere,” in Proceedings of the VI Siberian Conference on Climatic Environmental Monitoring, Tomsk, 2005, p. 106.

  48. 48.

    S. M. Sakerin, D. M. Kabanov, M. V. Panchenko, V. V. Pol’kin, B. N. Kholben, A. V. Smirnov, S. A. Beresnev, S. Yu. Gorda, G. I. Kornienko, S. V. Nikolashkin, V. A. Poddubnyi, and M. A. Tashchilin, “Results of Atmospheric Aerosol Monitoring in Asiatic Russia according to the AEROSIBNET Program in 2004,” Opt. Atmos. Okeana 18(11), 968–975 (2005).

    Google Scholar 

  49. 49.

    S. M. Sakerin, S. A. Beresnev, I. M. Vershinin, S. Yu. Gorda, G. S. Zhamsueva, A. S. Zayakhanov, D. M. Kabanov, V. N. Kopylov, G. I. Kornienko, Yu. I. Markelov, A. V. Mikhalev, S. V. Nikolashkin, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, V. L. Potemkin, M. A. Sviridenkov, A. V. Smirnov, M. A. Tashchilin, Yu. S. Turchinovich, and B. N. Kholben, Average Aerosol Characteristics of the Entire Atmosphere according to the Network Observations in Asiatic Russia, in Proceedings of the XIV Working Group “Siberian Aerosols” (IOA SO RAN, Tomsk, 2007) [in Russian], p. 42.

    Google Scholar 

  50. 50.

    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, et al., “Modeling Solar Irradiance and Comparison with Measurements in the Tomsk Region (Clear Atmosphere),” in Proceedings of the XIII Working Group “Siberian Aerosols” (IOA SO RAN, Tomsk, 2007) [in Russian], p. 48.

    Google Scholar 

  51. 51.

    N. E. Chubarova, A. N. Rublev, A. N. Trotsenko, and V. V. Trembach, “Calculation of Solar Irradiance and Comparison with Measurements in a Clear Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35(1), 222–239 (1999).

    Google Scholar 

  52. 52.

    D. M. Kabanov and S. M. Sakerin, “Results of Studying the Total Moisture Content of the Atmosphere Using the Method of Optical Hygrometry. Part II. Moisture Content Variability Characteristics,” Opt. Atmos. Okeana 9(5), 656–663 (1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. B. Zhuravleva.

Additional information

Original Russian Text © T.B. Zhuravleva, D.M. Kabanov, S.M. Sakerin, K.M. Firsov, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuravleva, T.B., Kabanov, D.M., Sakerin, S.M. et al. Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters. Atmos Ocean Opt 22, 63–73 (2009). https://doi.org/10.1134/S1024856009010102

Download citation

Keywords

  • Surface Albedo
  • Oceanic Optic
  • Aerosol Optical Thickness
  • Single Scattering Albedo
  • Scatter Phase Function