Skip to main content

Light scattering characteristics and the factor of radiation pressure efficiency for a spherical microcenter of optical breakdown laser plasma

Abstract

Oscillations and resonance regimes of the light scattering characteristics for a laser plasma spherical center, obtained by means of optical breakdown on seed particles of the aerosol submicron fraction, are considered. The conditions for increasing the efficiency of the laser emission radiation pressure on a plasma sphere are considered. It has been indicated that the amplitude modulation of the scattering intensity takes place due to the successive passage of partial wave amplitudes over the resonance frequencies of the plasma sphere. Small-angle scattering mainly contributes to the scattering intensity. The transcendental equations for determining the sphere eigenfrequencies at |m| ≤ 1 have been obtained using the Debye asymptotic approximation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.-B. Zheng, W.-F. Hsieh, S.-C. Chen, and R. K. Chang, “Temporally and Spatially Resolved Spectroscopy of Laser-Induced Plasma from Droplet,” Opt. Lett. 13(7), 559–561 (1988).

    Article  ADS  Google Scholar 

  2. 2.

    Ch. C. Wang and L. I. Davis, “New Observation of Dielectric Breakdown in Air Induced by a Focused Nd3+ Glass Laser with Various Widths,” Phys. Rev. Lett. 26(14), 822 (1971).

    Article  ADS  Google Scholar 

  3. 3.

    Yu. D. Kopytin, Yu. M. Sorokin, A. M. Skripkin, N. N. Belov., and V. I. Bukatyi, Optical Discharge in Aerosols (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  4. 4.

    N. N. Belov, “Emission Scattering by Plasma Of Optical Discharge in Aerosol,” Zh. Tekh. Fiz. 59(5), 14–20 (1989).

    Google Scholar 

  5. 5.

    N. N. Belov, “Light Scattering by Optical Breakdown Plasma Blobs in Gas and Transparent Dielectric,” Zh. Tekh. Fiz. 61(1), 47–50 (1991).

    Google Scholar 

  6. 6.

    S. Yu. Baev and N. N. Belov, “Indicatrix of Optical Field Scattering and Distribution in an Expanding Blob of Laser Plasma,” Opt. Spektrosk. 76(1), 30–32 (1994).

    ADS  Google Scholar 

  7. 7.

    C. Villarreal, R. Esquivel-Sirvent, and R. Jauregui, “Mie Scattering and the Physical Mechanism of Sonoluminescence,” Phys. Rev. E 61(1), 403–406 (2000).

    Article  ADS  Google Scholar 

  8. 8.

    K. R. Weninger, B. P. Barber, and S. J. Putterman, “Pulsed Mie Scattering Measurements of the Collapse of a Sonoluminescing Bubble, Phys. Rev. Lett. 78(9), 1799–1802 (1997).

    Article  ADS  Google Scholar 

  9. 9.

    R. Ruppin, “Optical Properties of a Plasma Sphere,” Phys. Rev. Lett., No. 24, 1434–1437 (1973).

    Google Scholar 

  10. 10.

    R. Ruppin, “Plane Wave Interaction with a Homogeneous Warm Plasma Sphere,” Plasma Phys. 17, 723–730 (1975).

    Article  ADS  Google Scholar 

  11. 11.

    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley&Sons, Singapore, 1983).

    Google Scholar 

  12. 12.

    W. J. Wiscombe, “Improved Mie Scattering Algorithms,” Appl. Opt. 19(9), 1505–1509 (1980).

    Article  ADS  Google Scholar 

  13. 13.

    G. Roll, T. Kaiser, and G. Schweiger, “Controlled Modification of the Expansion Order as a Tool in Mie Computations,” Appl. Opt. 37(12), 2483–2492 (1998).

    Article  ADS  Google Scholar 

  14. 14.

    G. Gouesbet and G. Grehan, “Generalized Lorenz-Mie Theories, from Past to Future,” Atomiz. Sprays 10(3–5), 277–333 (2000).

    Google Scholar 

  15. 15.

    K. S. Shifrin, Light Scattering in a Turbid Medium (Moscow, 1951) [in Russian].

  16. 16.

    V. A. Fok, “New Asymptotic Expression for Bessel Functions,” Dokl. Akad. Nauk SSSR 1(3), 97 (1934).

    Google Scholar 

  17. 17.

    N. N. Belov, “Logarithmic Variable of the Riccati-Bessel Functions of the First Kind during Mie Theoretical Calculations,” Opt. Atmos. Okeana 6(9), 1151–1158 (1993).

    Google Scholar 

  18. 18.

    G. I. Makarov and A. V. Osipov, “On Debye Asymptotic Presentations for Cylindrical Functions,” Vestn. Leningr. Univ., Ser. 4, No. 11, 47–52 (1987).

  19. 19.

    C. B. Balogh, “Asymptotic Expansion of Modified Bessel Function of the Third Kind of Imaginary Order,” SIAM J. App. Math. 15(5), 1315–1323 (1967).

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    D. E. Amos, “Computation of Modified Bessel Functions and Their Rations,” Math. Comp. 28(125), 239–251 (1974).

    MATH  Article  MathSciNet  Google Scholar 

  21. 21.

    N. N. Belov, “Calculation of Optical Fields in Particle according to the Mie Theory without Limitations on Diffraction Parameters Values and Complex Indicator of Particle Substance Refraction,” Opt. Atmos. 4(3), 321–323 (1991).

    Google Scholar 

  22. 22.

    R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye Series of Normally Incident Plane-Wave Scattering by an Infinite Multilayered Cylinder,” Appl. Opt. 45(24), 6255–6261 (2006).

    Article  ADS  Google Scholar 

  23. 23.

    C. C. Lam, P. T. Leung, and K. Young, “Explicit Asymptotic Formulas for the Position, Widths and Strengths of Resonances in Mie Scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).

    Article  ADS  Google Scholar 

  24. 24.

    S. Schiller, “Asymptotic Expansion of Morphological Resonance Frequencies in Mie Scattering,” Appl. Opt. 32(12), 2181–2185 (1993).

    ADS  Article  Google Scholar 

  25. 25.

    J. C. Carls and J. R. Brock, “Propagation of Laser Breakdown and Detonation Waves in Transparent Droplets,” Opt. Lett. 13(4), 273 (1988).

    Article  ADS  Google Scholar 

  26. 26.

    L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and G. N. Rogovtsev, Quant. Electron. 12(10), 2077–2081 (1985).

    Google Scholar 

  27. 27.

    V. V. Korobkin and A. J. Alcock, “Self-Focusing Effects Associated with Laser-Induced Air Breakdown,” Phys. Rev. Lett. 21(20), 1433–1436 (1968).

    Article  ADS  Google Scholar 

  28. 28.

    V. A. Pogodaev and A. E. Rozhdestvenskii, “Shielding Properties of Laser Plasma Initiated by Ruby OQG Emission on Isolated Water Particles,” in Proceedings of the 2nd Conference on Atmospheric Physics, Tomsk, 1980, Vol. 3, pp. 180–181.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Zhuravlev.

Additional information

Original Russian Text © M.V. Zhuravlev, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuravlev, M.V. Light scattering characteristics and the factor of radiation pressure efficiency for a spherical microcenter of optical breakdown laser plasma. Atmos Ocean Opt 22, 35 (2009). https://doi.org/10.1134/S1024856009010060

Download citation

Keywords

  • Radiation Pressure
  • Oceanic Optic
  • Complex Refractive Index
  • Optical Breakdown
  • Partial Wave Amplitude