Skip to main content

Intracavity spectroscopy of water vapor in the 1.06-micrometer range


Using an intracavity spectrometer with a neodymium glass laser with a spectral resolution of 0.035 cm−1 and threshold absorption sensitivity of 10−8 cm−1, water vapor absorption spectra have been studied. The H2O and HDO absorption spectra have been recorded in the temperature interval of 300–1000 K. The spectra have been identified, and many new energy levels of the H2O and HDO molecules have been determined. Coefficients of line center shifts induced by pressures of H2, O2, Ar, Xe, and Kr buffer gases and of the atmospheric air have been measured. For all buffer gases, a linear dependence of the shift magnitude on the pressure was observed. For a proper measurement of the coefficients of the line center shift, a technique employing a temperature-stabilized Fabry-Perot interferometer has been proposed.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Tennyson, “Calculating the Vibration-Rotation Spectrum of Water,” Phys. Scr. 73(1) 53–56 (2006).

    Article  Google Scholar 

  2. 2.

    P. F. Bernath, “The Spectroscopy of Water Vapour: Experiment, Theory and Applications,” Phys. Chem. Chem. Phys. 4, 1501–1509 (2002).

    Article  Google Scholar 

  3. 3.

  4. 4.

  5. 5.

    L. Wallace, P. Bernath, W. Livingston, et al., “Water on the Sun,” Science 268(5214), 1155–1157 (1995).

    Article  ADS  Google Scholar 

  6. 6.

    L. Wallace, W. Livingston, K. Hinkle, and P. F. Bernath, “Infrared Spectral Atlases of the Sun from NOAO,” Astrophys. J. Suppl. Ser. 106(1), 165–169 (1996).

    Article  ADS  Google Scholar 

  7. 7.

    K. H. Hinkle and T. G. Barnes, “Infrared Spectroscopy of Mira Variables,” Astrophys. J. 227(3), 923–934 (1979).

    Article  ADS  Google Scholar 

  8. 8.

    J.-M. Flaud, C. Camy-Peyret, and J.-P. Maillard, “Higher Ro-Vibrational Levels of H2O Deduced from Hugh Resolution Oxygen-Hydrogen Flame Spectra between 2800–6200 cm−1,” Mol. Phys. 32(2), 499–521 (1976).

    Article  ADS  Google Scholar 

  9. 9.

    C. Camy-Peyret, J.-M. Flaud, J.-P. Maillard, and G. Guelachvilli, “Higher Ro-Vibrational Levels of H2O Deduced from Hugh Resolution Oxygen-Hydrogen Flame Spectra between 6200–9100 cm−1,” Mol. Phys. 33(6), 1641–1650 (1977).

    Article  ADS  Google Scholar 

  10. 10.

    B. A. Voronin, A. B. Serebrennikov, and T. Yu. Chesnokova, “The Role of Weak Lines of Water Vapor Absorption in Solar Radiation Transfer,” Opt. Atmos. Okeana 14(9), 788–791 (2001).

    Google Scholar 

  11. 11.

    V. V. Zuev, Yu. N. Ponomarev, A. M. Solodov, V. A. Tikhomirov, and O. A. Romanovsky, “Influence of the shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by Differential-Absorption Method,” Opt. Lett. 10(7), 318–320 (1985).

    Article  ADS  Google Scholar 

  12. 12.

    T. M. Petrova, Yu. Poplavskii, V. Serdyukov, and L. N. Sinitsa, “Intracavity Laser Spectroscopy of High Temperature Water Vapour in the Range 9390–9450 cm−1,” Mol. Phys 104(16), 2691–2700 (2006).

    Article  ADS  Google Scholar 

  13. 13.

  14. 14.

    A. P. Shcherbakov, “Usage of the Sample Identification Theory Methods in Identifying Lines in Vibrational-Rotational Spectra,” Opt. Atmos. Okeana 10(8), 947–958 (1997).

    Google Scholar 

  15. 15.

    H. Partridge and D. W. Schwenke, “The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive ab initio Calculations and Experimental Data,” J. Chem. Phys. 106(11), 4618–4632 (1997).

    Article  ADS  Google Scholar 

  16. 16.

    O. Naumenko, O. Leshchishina, and A. Campargue, “High Sensitivity Absorption Spectroscopy of HDO by ICLAS-VeCSEL between 9100 and 9640 cm−1,” Mol. Spectrosc. 236(1), 58–69 (2006).

    Article  ADS  Google Scholar 

  17. 17.

  18. 18.

    C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and Broadening Parameters of H2O Lines Perturbed by He, Ne, Ar, Kr and Nitrogen in the Spectral Range 1850–2140 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68(3), 273–298 (2001).

    Article  ADS  Google Scholar 

  19. 19.

    C. Claveau, A. Henry, M. Lepere, et al., “Narrowing and Broadening Parameters for H2O Lines in the v2 Band Perturbed by Nitrogen from Fourier Transform and Tunable Diode Laser Spectroscopy,” J. Mol. Spectrosc. 212(2), 171–185 (2002).

    Article  ADS  Google Scholar 

  20. 20.

    J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “Measurements of Nitrogen-Shifting Coefficients of Water-Vapor Lines between 5000 and 10700 cm−1,” Can. J. Phys. 69(11), 1286–1297 (1991).

    ADS  Google Scholar 

  21. 21.

    P.-F. Coheur, S. Fally, M. Carleer, et al., “New Water Vapor Line Parameters in the 26000–13000 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 74(4), 493–510 (2002).

    Article  Google Scholar 

  22. 22.

    A. D. Bykov, N. N. Lavrent’eva, and L. N. Sinitsa, “Dependences of Coefficients of H2O Line Shift by Pressure on Vibrational and Rotational Quantum Numbers,” Opt. Spektrosk. 83(1), 73–82.

  23. 23.

    T. M. Petrova, L. N. Sinitsa, and A. M. Solodov, “Measuring Coefficients of Shift of the H2O Absorption Line Centers in the 1.06 μm Region by Atmospheric Gas Pressure,” Opt. Atmos. Okeana 20(09), 821–825 (2007).

    Google Scholar 

  24. 24.

    V. E. Grossman and W. E. Browell, “Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strengths, Self-Induced Pressure Broadening and Shifts, and Temperature Dependence of Line Widths and Shifts,” J. Mol. Spectrosc. 136(2), 264–294 (1989).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. M. Petrova.

Additional information

Original Russian Text © T.M. Petrova, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrova, T.M. Intracavity spectroscopy of water vapor in the 1.06-micrometer range. Atmos Ocean Opt 22, 6–13 (2009).

Download citation


  • Absorption Line
  • Oceanic Optic
  • Vibrational State
  • Rotational Quantum Number
  • Neodymium Glass Laser