Skip to main content

A possibility of observations of water dimer millimeter spectrum lines in an equilibrium gas phase


It was proposed earlier (A.F. Krupnov, Optics of Atmosphere and Ocean, 2007, v. 20, pp. 772–776) that to discover a water dimer spectrum in an equilibrium state it is necessary to observe single rotational lines of the water dimer in millimeter and submillimeter wavelength ranges at high resolution. Sufficiency of sensitivity of some microwave spectrometers for observing dimer lines with the absorption coefficient calculated by the authors is demonstrated. The conditions necessary for observations of a single dimer line against the background of total radiation absorption by water vapors in the millimeter range are considered in the paper. It is shown that the calculated intensity of a single line of dimer is only several times lower than total continuum absorption by water vapors and the absorption by water dimers makes the greater part of total observed absorption by water vapors in the millimeter range. Thus the direction of investigations which has been proposed by us earlier is promising for discovering water dimers in equilibrium conditions.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. S. Landsberg, “Intermolecular Forces and Light Raman Scattering,” Izv. Akad. Nauk, Ser. Fiz., No. 3, 373–382 (1938).

  2. 2.

    A. A. Viktorova and S. A. Zhevakin, “Microwave Absorption in Air by Water Vapor Dimers, Dokl. Akad. Nauk SSSR 171(5), 1061–1064 (1966).

    Google Scholar 

  3. 3.

    H. A. Gebbie, W. J. Burroughs, J. Chamberlain, et al., “Dimers of the Water Molecule in the Earth’s Atmosphere,” Nature 221, 143–145 (1969).

    Article  ADS  Google Scholar 

  4. 4.

    K. Pfeilsticker, A. Lotter, C. Peters, and H. Boesch, “Atmospheric Detection of Water Dimer via near Infrared Absorption,” Science 300, 2078–2080 (2003).

    Article  ADS  Google Scholar 

  5. 5.

    S. Kassi, P. Macko, O. Naumenko, and A. Campargue, “The Absorption Spectrum of Water near 750 nm by CW-CRDS: Contribution to the Search of Water Dimer Absorption,” Phys. Chem. Chem. Phys. 7(7), 2460–2467 (2005).

    Article  Google Scholar 

  6. 6.

    A. Lotter, Dissertation, (Heidelberg, 2006).

  7. 7.

    A. F. Krupnov and N. F. Zobov, “On the Possibility of Experimentally Observing Rotational Water Dimer Lines in the Equilibrium Gas Phase,” Opt. Atmos. Okeana 20(9), 772–776 (2007).

    Google Scholar 

  8. 8.

    Y. Scribano and C. Leforestier, “Contribution of Water Dimer Absorption to the Millimeter and Far Infrared Atmospheric Water Continuum,” J. Chem. Phys. 126, 234 301 (2007).

    Article  Google Scholar 

  9. 9.

    V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, et al., “New Measurements of the Water Vapor Continuum in the Region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transfer 109(3), 458–467 (2008).

    Article  ADS  Google Scholar 

  10. 10.

    T. Kuhn, A. Bauer, M. Godon, et al., “Water Vapor Continuum: Absorption Measurements at 350 GHz and Model Calculations,” J. Quant. Spectrosc. Radiat. Transfer 74(5), 545–562 (2002).

    Article  ADS  Google Scholar 

  11. 11.

    P. W. Rosenkranz, “Water Vapor Microwave Continuum Absorption: A Comparison of Measurements and Models,” Radio Sci. 33, 919–928 (1998).

    Article  Google Scholar 

  12. 12.

  13. 13.

    L. M. Kukin, Yu. N. Nozdrin, V. Ya. Ryadov, L. I. Fedoseev, and N. I. Furashov, “Determining the Contribution of Water Vapor Monomers and Dimers to Atmospheric Absorption according to the Measurements in the 1.15–1.55 mm Range,” Radiotekh. Elektron. 20(10), 2017–2026 (1975).

    Google Scholar 

  14. 14.

    F. N. Keutsch, N. Goldman, H. A. Harker, et al., “Complete Characterization of the Water Dimer Vibrational Ground State and Testing the VRT(ASP-W)III, SAPT 5st, and VRT(MCY-5f) Surfaces,” Mol. Phys. 101, 3477–3492 (2003).

    Article  ADS  Google Scholar 

  15. 15.

    A. R. W. McKellar, “Infrared Spectra of Weakly-Bound Complexes and Collision-Induced Effects Involving Atmospheric Molecules,” in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Vol. 27, Ed by C. Camy-Peyret and A.A. Vigasin (Nato Sci. Ser., Kluwer, London, 2003), pp. 223–232.

    Google Scholar 

  16. 16.

    G. T. Fraser, F. J. Lovas, R. D. Suenram, et al., “Microwave and Submillimeter-Wave Spectra of the Mixed Deuterated-Protonated Water-dimer Isotopomers,” J. Mol. Spectrosc. 181, 229–245 (1997).

    Article  ADS  Google Scholar 

  17. 17.

    Z. Slanina and G. Nagy, “A Classification and Evaluation of 99 Isometrizations among 54 Water-Dimer (H, D, T)-Isotopomers,” Chem. Phys. Lett. 177(6), 521–526 (1991).

    Article  ADS  Google Scholar 

  18. 18.

    I. V. Ptashnik, “Evidence of Contribution of Water Dimers to the Near-IR Water Vapor Self-Continuum,” J. Spectrosc. Radiat. Transfer 109(5), 831–852.

Download references

Author information



Corresponding author

Correspondence to A. F. Krupnov.

Additional information

Original Russian Text © A.F. Krupnov, M.Yu. Tretyakov, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krupnov, A.F., Tretyakov, M.Y. A possibility of observations of water dimer millimeter spectrum lines in an equilibrium gas phase. Atmos Ocean Opt 22, 1–5 (2009).

Download citation


  • Water Vapor
  • Water Vapor Pressure
  • Continuum Absorption
  • Water Dimer
  • Water Vapor Continuum