Skip to main content
Log in

The Effects of Temperature and Lithium Polysulfides on the Composition of Lithium Cathodic Deposits Formed at a Steel Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of lithium polysulfides on the amount and ratio of electrochemically active metallic lithium, electrochemically inactive metallic lithium, and chemically formed lithium compounds in the cathodic deposits formed on a stainless-steel electrode during galvanostatic cycling in 1 М LiClO4 solution in sulfolane at 15, 30, 45, and 60°C is studied using the method we have developed earlier. It is shown that the increase in temperature leads to increase in the Coulomb efficiency of cycling and the amount of electrochemically active metallic lithium; a decrease in the amount of electrochemically inactive metallic lithium, regardless of the presence of lithium polysulfides in the electrolyte. When lithium polysulfides have been introduced into the electrolyte, an increase in the Coulomb efficiency of the metallic lithium cycling and a change in the ratio of various forms of lithium in the cathodic deposits toward an increase in electrochemically active lithium by about 1.5 times are observed. The lithium polysulfides are assumed to contribute to the dissolution of electrochemically inactive metallic lithium, forming an interfacial “sulfide” film at the electrode, which possessed high ionic conductivity and good protective properties, the more so, at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Lin, D., Liu, Y., and Cui, Y., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, vol. 12, no. 3, p. 194. https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  2. Liu, B., Zhang, J.-G., and Xu, W., Advancing Lithium Metal Batteries, Joule, 2018, vol. 2, no. 5, p. 833. https://doi.org/10.1016/j.joule.2018.03.008

    Article  CAS  Google Scholar 

  3. Luo, Y., Guo, L., Xiao, M., Wang, S., Ren, S., Han, D., and Meng, Y., Strategies for inhibiting anode dendrite growth in lithium–sulfur batteries, J. Mater. Chem. A, 2020, vol. 8, p. 4629. https://doi.org/10.1039/c9ta12910c

    Article  CAS  Google Scholar 

  4. Mauger, A., Armand, M., Julien, C.M., and Zaghib, K., Challenges and issues facing lithium metal for solid-state rechargeable batteries, J. Power Sources, 2017, vol. 353, p. 333. https://doi.org/10.1016/j.jpowsour.2017.04.018

    Article  CAS  Google Scholar 

  5. Hou, L.-P., Zhang, X.-Q., Li, B.-Q., and Zhang, Q., Cycling a Lithium Metal Anode at 90 °C in a Liquid Electrolyte, Angew. Chem. Int. Ed., 2020, vol. 59, no. 35, p. 15109. https://doi.org/10.1002/anie.202002711

    Article  CAS  Google Scholar 

  6. Li, Z., Huang, J., Liaw, B.Y., Metzler, V., and Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries, J. Power Sources, 2014, vol. 254, p. 168. https://doi.org/10.1016/j.jpowsour.2013.12.099

    Article  CAS  Google Scholar 

  7. Guo, Y., Li, D., Xiong, R., and Li, H., Investigation of the temperature-dependent behaviours of Li metal anode, Chem. Commun., 2019, vol. 55, p. 9773. https://doi.org/10.1039/c9cc04897a

    Article  CAS  Google Scholar 

  8. Zhang, J., Khan, A., Liu, X., Lei, Y., Du, S., Lv, L., Zhao, H., and Luo, D., Research Progress of Anode-Free Lithium Metal Batteries, Crystals, 2022, vol. 12, no. 9, p. 1241. https://doi.org/10.3390/cryst12091241

    Article  CAS  Google Scholar 

  9. Qian, J., Adams, B. D., Zheng, J., Xu, W., Henderson, W.A., Wang, J., Bowden, M.E., Xu, S., Hu, J., and Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries, Adv. Funct. Mater., 2016, vol. 26, p. 7094. https://doi.org/10.1002/adfm.201602353

    Article  CAS  Google Scholar 

  10. Mogi, R., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z., In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures, J. Electrochem. Soc., 2002, vol. 149, no. 4, p. A385. https://doi.org/10.1149/1.1454138

    Article  CAS  Google Scholar 

  11. Mogi, R., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z., Surface film formation on nickel electrodes in propylene carbonate solution at elevated temperatures, J. Power Sources, 2002, vol. 108, nos. 1–2, p. 163. https://doi.org/10.1016/S0378-7753(02)00031-9

    Article  CAS  Google Scholar 

  12. Aurbach, D. and Gottlieb, H., The electrochemical behavior of selected polar aprotic systems, Electrochim. Acta, 1989, vol. 34, no. 2, p. 141. https://doi.org/10.1016/0013-4686(89)87079-3

    Article  CAS  Google Scholar 

  13. Ivanov, A.L., Mochalov, S.E., Karaseva, E.V., and Kolosnitsyn, V.S., Effect of the Solvent Nature on the Composition of Cathodic Deposits Formed on a Steel Electrode during Electrodeposition and Dissolution of Lithium Metal, Russ. J. Electrochem., 2022, vol. 58, p. 798. https://doi.org/10.1134/S1023193522090087

    Article  CAS  Google Scholar 

  14. Kolosnitsyn, V.S., Kuzmina, E.V., Sheina, L.V., Karaseva, E.V., and Yakovleva, A.A., Determination of the content of sulfide sulfur in solutions of lithium polysulfides in aprotic solvents by the acid-base method titration (in Russian), Izv. Vuzov., Ser. Chemistry Chem. Technol., 2012, vol. 55, no. 3, p. 22.

    CAS  Google Scholar 

  15. Vincent, C.A. and Scrosati, B., Modern Batteries: An Introduction to Electrochemical Power Sources. Second edition, Oxford: Butterworth-Heinemann, 1997.

    Google Scholar 

  16. Osaka, T., Homma, T., Momma, T., and Yarimizu, H., In situ observation of lithium deposition processes in solid polymer and gel electrolytes, J. Electroanal. Chem., 1997, vol. 421, nos. 1–2, p. 153. https://doi.org/10.1016/S0022-0728(96)04870-X

    Article  CAS  Google Scholar 

  17. Tang, M., Albertus, P., and Newman, J., Two-Dimensional Modeling of Lithium Deposition during Cell Charging, J. Electrochem. Soc., 2009, vol. 156, no. 5, p. A390. https://doi.org/10.1149/1.3095513

    Article  CAS  Google Scholar 

  18. Kolosnitsyn, V.S., Karaseva, E.V., and Shakirova, N.V., Features of Lithium Electrode Cycling in Electrolytes Containing Lithium Polysulfides (in Russian), Collection of materials, VI Int. Conf. “Fundamental problems of electrochemical energy” (in Russian), Saratov: Saratov Univ., 2005. P. 446.

  19. Kolosnitsyn, V.S., Karaseva, E.V., and Ivanov, A.L., Electrochemistry of a Lithium Electrode in Lithium Polysulfide Solutions, Russ. J. Electrochem., 2008, vol. 44, p. 564. https://doi.org/10.1134/S1023193508050091

  20. Kuzmina, E., Karaseva, E., Ivanov, A., and Kolosnitsyn, V., On the Factors Affecting Aging and Self-Discharge of Lithium–Sulfur Cells. Effect of Positive Electrode Composition, Energy Technol., 2019, article no. 1900134. https://doi.org/10.1002/ente.201900134

  21. Rauch, R.D., Abraham, K.M., Pearson, G.F., Surprenant, J.K., and Brummer, S.B., A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte, J. Electrochem. Soc., 1979, vol. 126, no. 4, p. 523. https://doi.org/10.1149/1.2129079

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to PhD. A.L. Ivanov (the Laboratory of electrochemistry, Ufa Institute of Chemistry, Ufa Federal Research Center, RAS) for his contribution toward the electrochemical studies. This work used the equipment of the Common Use Center “Chemistry” of the Ufa Institute of Chemistry, Ufa Federal Research Center, RAS and RCUC “Agidel” of the Ufa Federal Research Center, RAS.

Funding

This work is performed according to the State Contract no. 122031400252-2 “Electrode materials and electrolyte systems for the perspective energy storage devices.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karaseva.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaseva, E.V., Mochalov, S.E. & Kolosnitsyn, V.S. The Effects of Temperature and Lithium Polysulfides on the Composition of Lithium Cathodic Deposits Formed at a Steel Electrode. Russ J Electrochem 60, 252–262 (2024). https://doi.org/10.1134/S1023193524040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524040037

Keywords:

Navigation