Skip to main content
Log in

The Effect of the Pore Former Nature on the Microstructure of Solid-Oxide-Fuel-Cell NiO- and 10YSZ-Based Anodes Formed by Hybrid 3D-Printing

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The anodes based on the nickel oxide and yttria-stabilized zirconia are developed by the method of hybrid inkjet 3D-printing with laser treatment. The granulometric composition of the NiO/Zr0.9Y0.1O2-composite and the rheological characteristics of its based printing pastes are determined. The printing of three-dimensional test objects using the developed ceramic paste is studied experimentally. The influence of the pore formers—graphite and potato starch—added to the paste composition on the rheological characteristics of the paste is studied. The obtained samples of supporting anodes were studied by a complex of physicochemical methods to determine their morphological and structural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Singla, M. K., Nijhawan, P., and Oberoi, A. S., Hydrogen fuel and fuel cell technology for cleaner future: a review, Environ. Sci. Pollut. Res., 2021, vol. 28, no. 13, p. 15607.

    Article  CAS  Google Scholar 

  2. Parra, D., Valverde, L., Pino, F.J., and Patel, M.K., A review on the role, cost and value of hydrogen energy systems for deep decarbonisation, Renew. Sust. Energ. Rev., 2019, vol. 101, p. 279.

    Article  CAS  Google Scholar 

  3. Khan, M. Z., Iltaf, A., Ishfaq, H. A., Khan, F. N., Tanveer, W. H., Song, R. H., Mehran, M. T., Saleem, M., Hussain, A., and Masaud, Z., Flat-tubular solid oxide fuel cells and stacks: A review, J. Asian Ceram. Soc., 2021, vol. 9, no. 3, p. 745.

    Article  Google Scholar 

  4. Tai, X. Y., Zhakeyev, A., Wang, H., Jiao, K., Zhang, H., and Xuan, J., Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges, Fuel Cells, 2019, vol. 19, no. 6, p. 650.

    Article  Google Scholar 

  5. Zouridi, L., Garagounis, I., Vourros, A., Marnellos, G.E., and Binas, V., Advances in Inkjet-Printed Solid Oxide Fuel Cells, Adv. Mater. Technol., 2022, vol. 7, no. 7, 2101491.

    CAS  Google Scholar 

  6. Pelz, J.S., Ku, N., Meyers, M.A., and Vargas-Gonzalez, L.R., Additive manufacturing of structural ceramics: a historical perspective, J. Mater. Res. Technol., 2021, vol. 15, p. 670.

    Article  CAS  Google Scholar 

  7. Sun, C., Wang, Y., McMurtrey, M.D., Jerred, N.D., Liou, F., and Li, J., Additive manufacturing for energy: A review, Appl. Energy, 2021, vol. 282, p. 116041.

    Article  Google Scholar 

  8. Pham, T.T., Tu, H.P., Dao, T.D., To, T.D., Doan, D.C.T., and Dang, M. C., Fabrication of an anode functional layer for an electrolyte-supported solid oxide fuel cell using electrohydrodynamic jet printing, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2019, vol. 10, no. 1, p. 015004.

    CAS  Google Scholar 

  9. Jang, I. and Kelsall, G.H., Fabrication of 3D NiO-YSZ structures for enhanced performance of solid oxide fuel cells and electrolysers, Electrochem. Commun., 2022, vol. 137, p. 107260.

    Article  CAS  Google Scholar 

  10. Sobolev, A., Stein, P., and Borodianskiy, K., Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes, Ceram. Int., 2020, vol. 46, no. 16, p. 25260.

    Article  CAS  Google Scholar 

  11. Ghazanfari, A., Li, W., Leu, M.C., Watts, J.L., and Hilmas, G.E., Additive manufacturing and mechanical characterization of high density fully stabilized zirconia, Ceram. Int., 2017, vol. 43, no. 8, p. 6082.

    Article  CAS  Google Scholar 

  12. Xing, B., Cao, C., Zhao, W., Shen, M., Wang, C., and Zhao, Z., Dense 8 mol % yttria-stabilized zirconia electrolyte by DLP stereolithography, J. Eur. Ceram. Soc., 2020, vol. 40, no. 4, p. 1418.

    Article  CAS  Google Scholar 

  13. Kuterbekov, K.A., Nikonov, A.V., Bekmyrza, K.Z., Pavzderin, N.B., Kabyshev, A.M., Kubenova, M.M., and Aidarbekov, N., Classification of Solid Oxide Fuel Cells, Nanomaterials, 2022, vol. 12, no. 7, p. 1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prakash, B.S., Kumar, S.S., and Aruna, S.T., Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sust. Energ. Rev., 2014, vol. 36, p. 149.

    Article  Google Scholar 

  15. Sauerwein, M., Zlopasa, J., Doubrovski, Z., Bakker, C., and Balkenende, R., Reprintable paste-based materials for additive manufacturing in a circular economy, Sustainability, 2020, vol. 12, no. 19, p. 8032.

    Article  Google Scholar 

  16. Sukeshini, A.M., Cummins, R., Reitz, T.L., and Miller, R.M., Inkjet Printing of Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode, Electrochem. solid-state lett., 2009, vol. 12, p. B176.

    Article  CAS  Google Scholar 

  17. Deng, X. and Petric, A., Effect of anode porosity and pore size on electrochemical performance, ECS Proceedings Volumes, 2003, vol. 1, p. 653.

  18. Clemmer, R.M. and Corbin, S.F., Effect of graphite pore-forming agents on the sintering characteristics of Ni/YSZ composites for solid oxide fuel cell applications, Int. J. Appl. Ceram., 2012, vol. 9, no. 6, p. 1022.

    Article  CAS  Google Scholar 

  19. Zhou, J., Liu, Q., Zhang, L., Pan, Z., and Chan, S.H., Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting, Energy, 2016, vol. 115, p. 149.

    Article  CAS  Google Scholar 

  20. Khatko, Z.N., Titov, S.A., Ashinova, A.A., and Kolodina, E.M., The effect of the pectin substances combining on their aqueous solution viscosity, Vestnik Voronezh State Univ. Ingng. Tec., 2019, vol. 81, p. 133.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-30051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Malbakhova.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the paper presented at the IX All-Russia Conference with international participation “Fuel Cells and Power Plants Based on Them,” Chernogolovka, Moscow region, Russia, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malbakhova, I.A., Bagishev, A.S., Vorobyev, A.M. et al. The Effect of the Pore Former Nature on the Microstructure of Solid-Oxide-Fuel-Cell NiO- and 10YSZ-Based Anodes Formed by Hybrid 3D-Printing. Russ J Electrochem 60, 191–199 (2024). https://doi.org/10.1134/S102319352403008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352403008X

Keywords:

Navigation