Skip to main content
Log in

Performance Analysis of a Proton-Exchange Membrane Fuel Cell Battery: The Effect of Ambient Temperature

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A model of a membrane electrode assembly is considered as regards the effect of various climatic conditions on the specific power characteristics. The developed model is analyzed in comparison with a proton-exchange membrane fuel cell (PEMFC) stack operating at different ambient temperatures. The deviation (less than 10%) between the model and the experiment in the temperature range from –10 to +10°С is demonstrated. The ambient temperature of 10°C is found to be optimal for the battery operation The specific power is shown to decrease by 0.006–0.008 W/cm2 every 10°C above zero, which is insignificant and can be compensated using a buffer energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Kurnia, J. C., Chaedir, B. A., Sasmito, A. P., and Shamim, T., Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions, Appl. Energy, 2021, vol. 283, p. 116359.

    Article  CAS  Google Scholar 

  2. Zhao, C., Xing, S., Chen, M., Liu, W., & Wang, H., Optimal design of cathode flow channel for air-cooled PEMFC with open cathode, Int. J. Hydrogen Energy, 2020, vol. 45, no. 35, p. 17771.

    Article  CAS  Google Scholar 

  3. Jeong, S. U., Cho, E. A., Kim, H. J., Lim, T. H., Oh, I.H., and Kim, S. H., A study on cathode structure and water transport in air-breathing PEM fuel cells, J. Power Sources, 2006, vol. 159, no. 2, p. 1089.

    Article  CAS  Google Scholar 

  4. Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X.Z., & Wang, H., An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow, J. Power Sources, 2009, vol. 188, no. 1, p. 199.

    Article  CAS  Google Scholar 

  5. Sasmito, A. P., Birgersson, E., Lum, K. W., & Mujumdar, A.S., Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks, Renew. Energy, 2012, vol. 37, no. 1, p. 325.

    Article  CAS  Google Scholar 

  6. Sasmito, A.P., Birgersson, E., and Mujumdar, A.S., A novel flow reversal concept for improved thermal management in polymer electrolyte fuel cell stacks, Int. J. Therm. Sci., 2012, vol. 54, p. 242.

    Article  Google Scholar 

  7. Sasmito, A. P., Lum, K. W., Birgersson, E., & Mujumdar, A. S., Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks, J. Power Sources, 2010, vol. 195, no. 17, p. 5550.

    Article  CAS  Google Scholar 

  8. Shahsavari, S., Desouza, A., Bahrami, M., and Kjeang, E., Thermal analysis of air-cooled PEM fuel cells, Int. J. Hydrogen Energy, 2012, vol. 37, no. 23, p. 18261.

    Article  CAS  Google Scholar 

  9. Akbari, M., Tamayol, A., and Bahrami, M., Thermal assessment of convective heat transfer in air-cooled PEMFC stacks: an experimental study, Energy Procedia, 2012, vol. 29, p. 1.

    Article  CAS  Google Scholar 

  10. Faddeev, N., Anisimov, E., Belichenko, M., Kuriganova, A., and Smirnova, N., Investigation of the ambient temperature influence on the PEMFC characteristics: Modeling from a single cell to a stack, Processes, 2021, vol. 9, no. 12, p. 2117.

    Article  CAS  Google Scholar 

  11. Bhaiya, M., Putz, A., and Secanell, M., Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies, Electrochim. Acta, 2014, vol. 147, p. 294.

    Article  CAS  Google Scholar 

  12. Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., Polymer electrolyte fuel cell model, J. Electrochem. Soc., 1991, vol. 138, no. 8, p. 2334.

    Article  CAS  Google Scholar 

  13. Natarajan, D. and Van Nguyen, T., A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors, J. Electrochem. Soc., 2001, vol. 148, no. 12, p. A1324.

    Article  CAS  Google Scholar 

  14. Plawsky, J. L., Transport Properties of Materials, Transport Phenomena Fundamentals, Boca Raton: CRC, 2020. pp. 81-128.

    Book  Google Scholar 

  15. Weber, A. Z., Borup, R. L., Darling, R. M., Das, P. K., Dursch, T. J., Gu, W., and Zenyuk, I. V., A critical review of modeling transport phenomena in polymer-electrolyte fuel cells, J. Electrochem. Soc., 2014, vol. 161, no. 12, p. F1254.

    Article  Google Scholar 

  16. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F. N., & Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part I: Effect of compression and anisotropy of dry GDL, Electrochim. Acta, 2017, vol. 227, p. 419.

    Article  CAS  Google Scholar 

  17. Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F.N., and Münch, B., Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II: Pressure-induced water injection and liquid permeability, Electrochim. Acta, 2017, vol. 241, p. 414.

    Article  CAS  Google Scholar 

  18. Vetter, R. and Schumacher, J. O., Experimental parameter uncertainty in proton exchange membrane fuel cell modeling. Part II: Sensitivity analysis and importance ranking, J. Power Sources, 2019, vol. 439, p. 126529.

    Article  CAS  Google Scholar 

  19. Vichard, L., Petrone, R., Harel, F., Ravey, A., Venet, P., and Hissel, D., Long-term durability test of open-cathode fuel cell system under actual operating conditions, Energy Convers. Manag., 2020, vol. 212, p. 112813.

    Article  Google Scholar 

Download references

Funding

This study was supported by the strategical project “Hydrogen Energy Systems” of the Program of Development of the South Russian State Polytechnic University and the Program of Strategical Academic Leadership “Priority-2030.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Faddeev or N. V. Smirnova.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the paper presented at the IX All-Russia Conference with international participation “Fuel Cells and Power Plants Based on Them,” Chernogolovka, Moscow region, Russia, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faddeev, N.A., Vasyukov, I.V., Belichenko, M.A. et al. Performance Analysis of a Proton-Exchange Membrane Fuel Cell Battery: The Effect of Ambient Temperature. Russ J Electrochem 60, 176–180 (2024). https://doi.org/10.1134/S1023193524030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524030066

Keywords:

Navigation