Skip to main content
Log in

A Highly Sensitive Non-Enzymatic Glucose Electrochemical Sensor Electrode Material of CuO Nanospheres/Activated Carbon Composites

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrode materials of copper oxide (CuO) nanospheres composite activated carbon (AC) (CuO/AC) were prepared by a hydrothermal method. CuO/AC and chitosan (CTS) were immobilized on the surface of the glassy carbon electrode (GCE) to construct a non-enzymatic glucose electrochemical sensor (CuO/AC + CTS + GCE). The results show that an average particle size of spherical CuO is about 500 nm, which evenly distribute on the surface of AC. The nanocomposites have a large surface area, more active sites, and higher electron transfer ability. CuO/AC + CTS + GCE-2 with a Cu2+ and AC molar ratio of 1 : 2 enhanced electrocatalytic activity toward the oxidation of glucose in alkaline media. It displays a fast response to glucose with a high sensitivity of 2073.6 μA mM–1 cm–2, a good linear concentration range from 0.2 to 2400 μM, a low detection limit of 0.1 μΜ (S/N = 3), and fast current response of 5 s. The sensor is highly selective to glucose in the presence of commonly interfering species. CuO/AC as electrode materials has the potential application for a cost-effective, non-enzymatic glucose electrochemical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Hossain, P., Kawar, B., and Nahas, M.E.I., Obesity and diabetes in the developing world-a growing challenge, N. Engl. J. Med., 2007, vol. 356, p. 213. https://doi.org/10.1056/nejmp068177

    Article  CAS  PubMed  Google Scholar 

  2. Norman, P.E., Wendy, A.D., Bruce, D.G., and Davis, T., Peripheral arterial disease and risk of cardiac death in type 2 diabetes the fremantle diabetes study, Diabetes Care, 2006, vol. 29, p. 575. https://doi.org/10.2337/diacare.29.03.06.dc05-1567

    Article  PubMed  Google Scholar 

  3. Rosa, S.D., Arcidiacono, B., Chiefari, E., Brunetti, A., Indolfi, C., and Foti, D.P., Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links, Front. Endocrinol., 2018, vol. 9, p. 2. https://doi.org/10.3389/fendo.2018.00002

    Article  Google Scholar 

  4. Bonner, R., Albajrani, O., Hudspeth, J., and Upadhyay, A., Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links, Prim. Care, 2020, vol. 47, p. 645. https://doi.org/10.3389/fendo.2018.00002

    Article  PubMed  Google Scholar 

  5. Wong, T.Y., Cheung, C.M.G., Larsen, M., Sharma, S., and Simó, R., Diabetic retinopathy, Nat. Rev. Dis. Primers, 2016, vol. 2, p. 16013. https://doi.org/10.1038/nrdp.2016.12

    Article  Google Scholar 

  6. Patel, S.S. and Udayabanu, M., Effect of natural products on diabetes associated neurological disorders, Rev. Neurosci., 2017, vol. 28, p. 271. https://doi.org/10.1515/revneuro-2016-0038

    Article  PubMed  Google Scholar 

  7. Clark, L. and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 1962, vol, 102, p. 29. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  8. Chhillar, A.K. and Rana, J.S., Enzyme nanoparticles and their biosensing applications: a review, Anal. Biochem., 2019, vol. 581, p. 113345. https://doi.org/10.1016/j.ab.2019.113345

    Article  CAS  PubMed  Google Scholar 

  9. Xu D., Meng, X., Chen, Z., Li, Y., and Zhang, D., Design and fabrication of Ag–CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose, Sens. Actuators B: Chem., 2018, vol. 265, p. 435. https://doi.org/10.1016/j.snb.2018.03.086

  10. Qian, L., Mao, J., Tian, X., Yuan, H., and Dan, X., In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor, Sens. Actuators B: Chem., 2013, vol. 176, p. 952. https://doi.org/10.1016/j.snb.2012.09.076

    Article  CAS  Google Scholar 

  11. Lu, W., Qin, X., Asiri, A.M., Ai-Youbi, A.O., and Sun, Z., Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection, Analyst, 2012, vol. 138, p. 417. https://doi.org/10.1039/c2an36138h

    Article  CAS  Google Scholar 

  12. Radhakrishnan, S. and Kim, S.J., Facile fabrication of NiS and a reduced graphene oxide hybrid film for nonenzymatic detection of glucose, RSC Adv., 2015, vol. 5, p. 44346. https://doi.org/10.1039/C5RA01074H

    Article  CAS  Google Scholar 

  13. Li, Y.Y., Kang, P., Huang, H.Q., Liu, Z.G., Li, G., Guo, Z., and Huang, X.J., Porous CuO nanobelts assembly film for nonenzymatic electrochemical determination of glucose with high fabrication repeatability and sensing stability, Sens. Actuators B: Chem., 2020, vol. 307, p. 127639. https://doi.org/10.1016/j.snb.2019.127639

    Article  CAS  Google Scholar 

  14. Leong, K.L., Ho, M.Y., Lee, X.Y., and Yee, M.S., A review on the development of non-enzymatic glucose sensor based on graphene-based nanocomposites, Nano, 2020, vol. 15, p. 2030004. https://doi.org/10.1142/s1793292020300042

    Article  CAS  Google Scholar 

  15. Ye, D.X., Liang, G.H., Li, H.X., Luo, J., Zhang, S., Chen, H., and Kong, J.L., A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva, Talanta, 2013, vol. 116, p. 223. https://doi.org/10.1016/j.talanta.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  16. Pop, A., Manea, F., Orha, C., Motoc, S., Llinoiu, E., Vaszilcsin, N., and Schoonman, J., Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose, Nanoscale Res. Lett., 2012, vol. 7, p. 266. https://doi.org/10.1186/1556-276x-7-266

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ndamanisha, J.C. and Guo, L.P., Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode, Bioelectrochemistry, 2009, vol. 77, p. 60. https://doi.org/10.1016/j.bioelechem.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborty, P., Dhar, S., Debnath, K., Majumder, T., and Mondal, S.P., Non-enzymatic and non-invasive glucose detection using Au nanoparticle decorated CuO nanorods, Sens. Actuators B: Chem., 2018, vol. 283, p. 776. https://doi.org/10.1016/j.snb.2018.12.086

    Article  CAS  Google Scholar 

  19. Hao, L.T., Sun, K.G., and Hur, S.H., Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel, Sens. Actuators B: Chem., 2015, vol. 210, p. 618. https://doi.org/10.1016/j.snb.2015.01.020

    Article  CAS  Google Scholar 

  20. Ren, Z., Mao, H., Luo, H., and Liu, Y., Glucose sensor based on porous Ni by using a graphene bottom layer combined with a Ni middle layer, Carbon, 2019, vol. 149, p. 609. https://doi.org/10.1016/j.carbon.2019.04.073

    Article  CAS  Google Scholar 

  21. Ji, Y.Q., Liu, J., Liu, X.N., Yuen, M.M.F., Fu, X.Z., Yang, Y., and Wong, C.P., 3D Porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation, Electrochim. Acta, 2017, vol. 248, p. 299. https://doi.org/10.1016/j.carbon.2019.04.073

    Article  CAS  Google Scholar 

  22. Zhou, Y., Ni, X., Ren, Z., Ma, J.Y., Xu, J.Z., and Chen, X.J., A flower-like NiO-SnO2 nanocomposite and its non-enzymatic catalysis of glucose, RSC Adv., 2017, vol. 7, p. 45177. https://doi.org/10.1039/C7RA07582K

    Article  CAS  Google Scholar 

  23. Wang., L., Zhang, Y., Xie, Y., Yu, J., Yang, H., Miao, L., and Song, Y., Three-dimensional macroporous carbon/hierarchical Co3O4 nanoclusters for nonenzymatic electrochemical glucose sensor, Appl. Surf. Sci., 2017, vol. 402, p. 47. https://doi.org/10.1016/j.apsusc.2017.01.062

  24. Chakraborty, P., Dhar, S., Deka, N., Debnath, K., and Mondal, S.P., Non-enzymatic salivary glucose detection using porous CuO nanostructures, Sens. Actuators B: Chem., 2019, vol. 302, p. 127. https://doi.org/10.1016/j.snb.2019.127134

    Article  CAS  Google Scholar 

  25. Yang, S.L., Li, G., Wang, G.F., Zhao, J.H., Gao, X.H., and Qu, L.B., Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor, Sens. Actuators B: Chem., 2015, vol. 221, p. 172. https://doi.org/10.1016/j.snb.2015.06.110

    Article  CAS  Google Scholar 

  26. Huang, Z.J., Zheng, L.L., Feng, F., Chen, Y.Y., Wang, Z.Z., Lin, Z., Lin, X.H., and Weng, S.H., A simple and effective colorimetric assay for glucose based on MnO2 nanosheets, Sensors, 2018, vol. 18, p. 2525. https://doi.org/10.3390/s18082525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, D., Zhu, C.L., Meng, X., Chen, Z.X., Li, Y., Zhang, D., and Zhu, S.M., Design and fabrication of Ag–CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose, Sens. Actuators B: Chem., 2010, vol. 265, p. 435. https://doi.org/10.1016/j.snb.2018.03.086

    Article  CAS  Google Scholar 

  28. Zhang, X.J., Gu, A.X., Wang, G.F., Wei, Y., Wang, W., Wu, H.Q., and Feng, B., Fabrication of CuO nanowall on Cu substrate for high performance enzyme-free glucose sensor, Cryst. Eng. Commun., 2010, vol. 12, p. 1120. https://doi.org/10.1039/b919749d

    Article  CAS  Google Scholar 

  29. Sreekumar, A., Navaneeth, P., Suneesh, P.V., Nair, B.G., and Babu, T.G.S., A graphite pencil electrode with electrodeposited Pt–CuO for nonenzymatic amperometric sensing of glucose over a wide linear response range, Microchim. Acta, 2020, vol. 187, p. 113. https://doi.org/10.1007/s00604-019-4077-2

    Article  CAS  Google Scholar 

  30. Yang, J., Tan, W.S., Chen, C.X., Tao, Y.X., Qin, Y., and Kong, Y., Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mat. Sci. Eng. C-Mater., 2017, vol. 78, p. 210. https://doi.org/10.1016/j.msec.2017.04.097

    Article  CAS  Google Scholar 

  31. Yang, J.P., Lin, Q.W., Yin, W., Jiang, T., Zhao, D.H., and Jiang, L.C., A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites, Sens. Actuators B: Chem., 2017, vol. 253, p. 1087. http://dx.doi.org/1087.10.1016/j.snb.2017.07.008.

    Article  CAS  Google Scholar 

  32. Kong, L.R., Lu, X.F., Bian, X.J., Zhang, W.J., and Wang, C., Accurately tuning the dispersity and size of palladium particles on carbon spheres and using carbon spheres/palladium composite as support for polyaniline in H2O2 electrochemical sensing, Langmuir, 2010, vol. 26, p. 5985. https://doi.org/10.1021/la904509v

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, J., Ma, J.L., Zhang, S.B., Wang, W.C., and Chen, Z.D., A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres, Sens. Actuators B: Chem., 2015, vol. 211, p. 385. https://doi.org/10.1016/j.snb.2015.01.100

    Article  CAS  Google Scholar 

  34. Ni, Y., Sun, Z.P., Zeng, Z.X., Liu, F.W., and Qin, J.M., Hydrothermal fabrication of hierarchical CuO nanoflowers for dual-function amperometric sensing of hydrogen peroxide and glucose, New J. Chem., 2019, vol. 43, p. 18629. https://doi.org/10.1039/c9nj04236a

    Article  CAS  Google Scholar 

  35. Ding, J.Y., Zhong, L., Wang, X., Chai, L.L., Wang, Y.L., Jiang, M.H., Li, T.T., Hu, Y., Qian, J.J., and Huang, S.M., General approach to MOF-derived core-shell bimetallic oxide nanowires for fast response to glucose oxidation, Sens. Actuators B: Chem., 2020, vol. 306, p. 127551. https://doi.org/10.1016/j.snb.2019.127551

    Article  CAS  Google Scholar 

  36. Jiang, L.C. and Zhang, W.D., A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 2010, vol. 25, p. 1402. https://doi.org/10.1016/j.bios.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  37. Yang, T.T., Xu, J.K., Lu, L.M., Zhu, X.F., Gao, Y.S., Xing, H.K., Yu, Y.F., Ding, W.C., and Liu, Z., Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection, J. Electroanal. Chem., 2016, vol. 761, p. 118. https://doi.org/10.1016/j.jelechem.2015.12.015

    Article  CAS  Google Scholar 

  38. Ashok, A., Kumar, A., and Tarlochan, F., Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles, Appl. Surf. Sci., 2019, vol. 481, p. 712. https://doi.org/10.1016/j.apsusc.2019.03.157

    Article  CAS  Google Scholar 

  39. Xu, Q., Zhao, Y., Xu, J.Z., and Zhu, J.J., Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor, Sens. Actuators B: Chem., 2006, vol. 114, p. 379. https://doi.org/10.1016/j.snb.2005.06.005

    Article  CAS  Google Scholar 

  40. Zhang, J., Zhu, X.L., Dong, H.F., Zhang, X.J., Wang, W.C., and Chen, Z.D., In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose, Microchim. Acta, 2013, vol. 105, p. 433. https://doi.org/10.1016/j.electacta.2013.04.169

    Article  CAS  Google Scholar 

  41. Sun, S.D., Zhang, X.Z., Sun, Y.X., Yang, S.C., Song, X.P., and Yang, Z.M., Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 10904. https://doi.org/10.1039/c3cp50922b

    Article  CAS  PubMed  Google Scholar 

  42. Kim, S.H., Umar, A., and Hwang, S.W., Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application, Ceram. Int., 2015, vol. 41, p. 9468. https://doi.org/10.1016/j.ceramint.2015.04.003

    Article  CAS  Google Scholar 

  43. Wei, C.H.N., Zou, X., Liu, Q.M., Li, S.X., Kang, C.X., and Xiang, W., A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays, Electrochim. Acta, 2020, vol. 334, p. 135630. https://doi.org/10.1016/j.electacta.2020.135630

    Article  CAS  Google Scholar 

  44. Dong, J.P., Tian, T.L., Ren, L.X., Zhang, Y., Xu, J.Q., and Cheng, X.W., CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing, Colloid. Surf. B, 2015, vol. 125, p. 206. https://doi.org/10.1016/j.colsurfb.2014.11.027

    Article  CAS  Google Scholar 

  45. SoYoon, S., Ramadoss, A., Saravanakumar, B., and Kim, S.J., Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application, J. Electroanal. Chem., 2014, vols. 717–718, p. 90. https://doi.org/10.1016/j.jelechem.2014.01.012

    Article  CAS  Google Scholar 

  46. Cui, Z.Z., Yin, H.Y., and Nie, Q.L., Controllable preparation of hierarchically core-shell structure NiO/C microspheres for non-enzymatic glucose sensor, J. Alloy Compd., 2015, vol. 632, p. 402. https://doi.org/10.1016/j.jallcom.2015.01.213

    Article  CAS  Google Scholar 

  47. Hsu, Y.W., Hsu, T.K., Sun, C.L., Nien, Y.T., Pu, N.W., and Ger, M.D., Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta, 2012, vol. 82, p. 152. https://doi.org/10.1016/j.electacta.2012.03.094

    Article  CAS  Google Scholar 

  48. Zhang, J., Ding, N.N., Cao, J.Y., Wang, W.C., and Chen, Z.D., In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric non-enzymatic sensing of glucose, Sens. Actuators B: Chem., 2013. vol. 178, p. 125. https://doi.org/10.1016/j.snb.2012.12.070

    Article  CAS  Google Scholar 

Download references

Funding

We would like to express our gratitude to the 2017 Open Project of the Building Energy Conservation and Science and Technology Department of Ministry of Housing and Urban-Rural Development of Beijing University of Civil Engineering and Architecture (UDC2017031812); The Science and Technology Project of Shandong Provincial Housing and Urban-Rural Department (2017-K3-002); The Teach Case Library Construction Project of Professional Degree Postgradute of Shandong Jianzhu University (ALK201711); Shandong Jianzhu University Teaching Reform Research Project (XJG2021034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xiang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong Xiang, Zhao, L., Wang, Y. et al. A Highly Sensitive Non-Enzymatic Glucose Electrochemical Sensor Electrode Material of CuO Nanospheres/Activated Carbon Composites. Russ J Electrochem 59, 1194–1205 (2023). https://doi.org/10.1134/S1023193524020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524020083

Keywords:

Navigation